ArticleApplied GeophysicsModeling electromagnetics on cylindrical meshes with applications to steel-cased wellsLindsey J. HeagyDoulas W. OldenburgMarch 7, 2019https://doi.org/10.1016/j.cageo.2018.11.010Download PDFBack to ArticleDownload ArticleContentsModeling electromagnetics on cylindrical meshes with applications to steel-cased wellsEquationsconductanceconstitutiverelationsdcequationsdiscretedcccdiscretedcnodaldiscretefdemebdiscretefdemhjmaxwellfreqmaxwelltimepermeanceFiguresTablesSupporting Documentsconductanceconstitutiverelationsdcequationsdiscretedcccdiscretedcnodaldiscretefdemebdiscretefdemhjmaxwellfreqmaxwelltimepermeanceaugustin-response-function-muaugustin-response-function-sigmaaugustin3cmaugustinbfieldsaugustinfsrbfdembtdemcommer-meshcommer-modelcommer-resultscyl-finite-volumecylwrapfdemnsfkaufman-finite-wellkaufman-setupkaufman-zonesmagnetic-flux-density-mumagnetic-flux-density-sigmatdem-currentstdemnsfcommer-comparison∇⋅j⃗=I(δ(r⃗−r⃗s+)−δ(r⃗−r⃗s−))e⃗=−∇ϕ\begin{split} \nabla \cdot \vec{j} &= I\left(\delta(\vec{r} - \vec{r}_{s^{+}}) - \delta(\vec{r} - \vec{r}_{s^{-}})\right) \\ \vec{e} &= - \nabla \phi \end{split}∇⋅je=I(δ(r−rs+)−δ(r−rs−))=−∇ϕ(1)EquationsconstitutiverelationsEquationsdiscretedccc