Detecting induced polarisation effects in time-domain data - a modelling study using stretched exponentials

1Discretization

In this section, we discuss important elements about discretizing Maxwell’s equations in the time-domain with the convolution term shown in eq. (9), to simulate IP effects in time-domain EM data. Appendix A.1 illustrates how convolutionary time-domain Maxwell’s equations can be discretized. Appendix A.2 describes how the singularity of SE conductivity function at t=0t=0 is handled. Most of key challenges about this discretization are tackled in Marchant (2015) (see page 21), and we have extended his work, applied for Cole-Cole conductivity, to SE conductivity.

1.1Maxwell’s equations

The stretched exponential (SE) conductivity provided in eq. (8) in the time-domain can be rewritten as

σse(t)=σδ(t)+σ(t)\sigma_{se}(t) = \siginf \delta (t) + \dsig (t)

where δ(t)\delta(t) is a Dirac-Delta function and σ(t)\dsig(t) is

σ(t)=σηset1(tτse)cseexp((tτse)cse)\dsig (t) = -\siginf \eta_{se}t^{-1}(\frac{t}{\tau_{se}})^{c_{se}}exp\Big(-(\frac{t}{\tau_{se}})^{c_{se}}\Big)

Considering a time-dependent conductivity, Ohm’s Law can be written as

j=σse(t)e=0tσ(tu)e(u)du\j = \sigma_{se}(t) \otimes \e =\int_0^t \sigma(t-u) \e (u) du

and substituting eq. (1) yields

j=σe+0tσ(tu)e(u)du\j = \siginf \e + \int_0^t \dsig(t-u) \e (u) du

Using the Backward Euler method, we discretize Maxwell’s equations in eqs. (4) and (5) in time:

×e (n)=b(n)b(n1)t(n)\curl \e^{\ (n)} = -\frac{\b^{(n)}-\b^{(n-1)}}{\triangle t^{(n)}}
×μ1b(n)j(n)=js(n)\curl \mu^{-1} \b^{(n)} - \j^{(n)} = \j_s^{(n)} \\

where t(n)=t(n)t(n1)\triangle t^{(n)} = t^{(n)}- t^{(n-1)}. To discretize the integral in eq. (4), we use the trapezoidal rule:

t(k1)t(k)σ(tu)e(u)du=t(k)2(σ(t(n)t(k1))e (k1)+σ(t(n)t(k))e (k))\int_{t^{(k-1)}}^{t^{(k)}} \dsig(t-u) \e (u) du = \frac{\triangle t^{(k)}}{2} \Big(\dsig (t^{(n)} - t^{(k-1)}) \e^{\ (k-1)} + \dsig (t^{(n)} - t^{(k)}) \e^{\ (k)} \Big)

Fig. 1 shows a conceptual diagram for this discrete convolution procedure. Hence eq. (4) can be discretized as

j(n)=σe (n)+k=1nt(k)2(σ(t(n)t(k1))e (k1)+σ(t(n)t(k))e (k))\j^{(n)} = \siginf \e^{\ (n)} + \sum_{k=1}^{n} \frac{\triangle t^{(k)}}{2} \Big(\dsig (t^{(n)} - t^{(k-1)}) \e^{\ (k-1)} + \dsig (t^{(n)} - t^{(k)}) \e^{\ (k)} \Big)

This can be rewritten as

j(n)=(σ+γ(t(n)))e (n)+jpol(n1)\j^{(n)} = \Big(\siginf + \gamma (\triangle t^{(n)})\Big)\e^{\ (n)} + \j_{pol}^{(n-1)}

where the polarization current, jpol(n1)\j_{pol}^{(n-1)} is

jpol(n1)=k=1n1t(k)2(σ(t(n)t(k1))e (k1)+σ(t(n)t(k))e (k))+κ(t(n))e (n1)\begin{align} \j_{pol}^{(n-1)} = \sum_{k=1}^{n-1} \frac{\triangle t^{(k)}}{2} \Big(\dsig (t^{(n)} - t^{(k-1)}) \e^{\ (k-1)} + \dsig (t^{(n)} - t^{(k)}) \e^{\ (k)} \Big) \nonumber \\ + \kappa(\triangle t^{(n)}) \e^{\ (n-1)} \end{align}

For the simplest case when (cse=1c_{se}=1), then σ(t=0)\dsig(t=0) is well defined and γ(t(n))\gamma (\triangle t^{(n)}) and κ(t(n))\kappa (\triangle t^{(n)}) are respectively:

γ(t(n))=t(n)2σ(0),\gamma(\triangle t^{(n)}) = \frac{\triangle t^{(n)}}{2}\dsig (0),
κ(t(n))=t(n)2σ(t(n))\kappa(\triangle t^{(n)}) = \frac{\triangle t^{(n)}}{2} \dsig (\triangle t^{(n)})

However, when cse1c_{se}\neq1, σ(t=0)\dsig(t=0) is singular and hence it requires special numerical treatment; this is described in Appendix A.2.

For the discretization, we use a staggered mimetic finite volume approach Hyman et al. (2002). Here, boldface with uppercase and lowercase indicate matrices and column vectors, respectively. Further details about the discretization can be found in Haber (2014) (see page 31). Discretizing eqs. (5), (6), and (9) yields

Ce (n)=b(n)b(n1)t(n)\dcurl \de^{\ (n)} = -\frac{\db^{(n)}-\db^{(n-1)}}{\triangle t^{(n)}}
CMμ1fb(n)Mej(n)=se(n),\dcurl \MfMui \db^{(n)} - \Me \dj^{(n)} = \mathbf{s}_e^{(n)}, \\
Mej(n)=MAe(n)e (n)+jpol(n1)\Me\dj^{(n)} = \Mes{A}^{(n)}\de^{\ (n)} + \dj_{pol}^{(n-1)}

where

jpol(n1)=k=1n1t(k)2(Mσ(n,k1)ee (k1)+Mσ(n,k)ee (k))+Mκee (n1)\begin{align} \dj_{pol}^{(n-1)} = \sum_{k=1}^{n-1} \frac{\triangle t^{(k)}}{2} \Big(\Mes{\dsig (n, k-1)} \e^{\ (k-1)} + \Mes{\dsig (n, k)} \de^{\ (k)} \Big) \nonumber \\ + \Mes{\kappa} \de^{\ (n-1)} \end{align}

Here, C\mathbf{C} is the discrete edge-curl operator; Me\mathbf{M}^e and Mf\mathbf{M}^f are the edge and face inner-product matrices, respectively. For an inner-product matrix, the subscript indicates corresponding physical property (e.g. Mμ1fM^{f}_{\mu^{-1}}: the face inner-product matrix for μ1\mu^{-1}).

Rearranging the above equations to solve for e\de yields:

(CTMμ1fC+1t(n)MAe(n))e(n)=1t(n)(se(n)se(n1))+1t(n)Mej(n1)1t(n)jpol(n1)\begin{align} \Big(\dcurl^T \MfMui \dcurl + \frac{1}{\triangle t^{(n)}} \Mes{A}^{(n)}\Big) \de^{(n)} \nonumber \\ = - \frac{1}{\triangle t^{(n)}} (\mathbf{s}_e^{(n)}-\mathbf{s}_e^{(n-1)}) + \frac{1}{\triangle t^{(n)}} \Me \dj^{(n-1)} - \frac{1}{\triangle t^{(n)}} \dj_{pol}^{(n-1)} \end{align}

By solving the above equation at each time step, we obtain e\de. The measured data for AEM are often db/dt-db/dt , which can be computed as

db/dt=Ce\mathbf{db/dt} = -\dcurl \de

The measured data at a receiver loop can be expressed as

d=P(db/dt)\mathbf{d} = \mathbf{P} (-\mathbf{db/dt})

where P\mathbf{P} is an interpolation matrix, which projects db/dt\mathbf{db/dt} fields, defined in a 3D domain, to a receiver location, and samples those fields at the measured time channels. For discretization of eqs. ( 17) to ( 19) we use, SimPEG’s mesh toolbox. The developed code is open-source as a SimPEG-EMIP package (https://github.com/sgkang/simpegEMIP)

Conceptual diagram to describe discrete convolution process in eq. (%s)

Figure 1:Conceptual diagram to describe discrete convolution process in eq. (7)

1.2Handling the singularity at σ(t=0)\sigma(t=0)

The SE conductivity, σse(t)\sigma_{se}(t) at tt=0, is singular, whereas its integral is well-defined, as shown in eq. (6). When discretizing eq. (3), this singularity will be problematic. In particular, the issue occurs at the last time segment (k=nk=n) of the convolution term in eq. (8), which can be written in continuous form:

tn1tnσ(u)e(tu)du\int_{t^{n-1}}^{t^{n}} \dsig(u) \e(t-u) du

This problem also occurs when the Cole-Cole function is used. Marchant (2015) (see page 31) tackled this issue by approximating e\e at this time segment as a linear function:

e(t)=tntt(n)e (n1)+ttn1t(n)e (n1), when (t(n1)tt(n))\e(t) = \frac{t^{n}-t}{\triangle t^{(n)}} \e^{ \ (n-1)} + \frac{t-t^{n-1}}{\triangle t^{(n)}} \e^{ \ (n-1)}, \ \text{when} \ (t^{(n-1)}\leq t \leq t^{(n)})

Then by substituting this in to eq. (20), and evaluating the integration, the discrete form of eq. (20) is obtained:

tn1tnσ(u)e(tu)duκ(t(n))e (n1)+γ(t(n))e (n)\int_{t^{n-1}}^{t^{n}} \dsig(u) \e(t-u) du \simeq \kappa(\triangle t^{(n)}) \e^{\ (n-1)} + \gamma(\triangle t^{(n)}) \e^{\ (n)}

To obtain γ(t(n))\gamma(\triangle t^{(n)}) and κ(t(n))\kappa(\triangle t^{(n)}), we use the same trick. Integration of σ(t)\dsig(t) is not possible, so by Taylor expanding, we obtain an approximate form of σ(t)\dsig(t) which is valid for small tt:

σ(t)=σηset1(tτse)cseexp((tτse)cse)σηset1(tτse)cse(1(tτse)cse)=σηset1((tτse)cse(tτse)2cse)\begin{align} \dsig (t) = -\siginf \eta_{se}t^{-1}(\frac{t}{\tau_{se}})^{c_{se}}exp\Big(-(\frac{t}{\tau_{se}})^{c_{se}}\Big) \nonumber \\ \simeq -\siginf \eta_{se}t^{-1}(\frac{t}{\tau_{se}})^{c_{se}}\Big(1-(\frac{t}{\tau_{se}})^{c_{se}}\Big) \nonumber \\ = -\siginf \eta_{se}t^{-1}\Big((\frac{t}{\tau_{se}})^{c_{se}}-(\frac{t}{\tau_{se}})^{2c_{se}}\Big) \end{align}

By substituting eq. (23) into eq. (20) and evaluating the integral, we finally obtain

γ(t(n))=σm((t(n))csecse(cse+1)(t(n))2cse2cse(2cse+1)τsecse)\gamma(\triangle t^{(n)}) = \siginf m \Big( \frac{(\triangle t^{(n)})^{c_{se}}}{c_{se}(c_{se}+1)}- \frac{(\triangle t^{(n)})^{2c_{se}}}{2c_{se}(2c_{se}+1)\tau_{se}^{c_{se}}} \Big)
κ(t(n))=σm((t(n))csecse+1(t(n))2cse(2cse+1)τsecse)\kappa(\triangle t^{(n)}) = \siginf m \Big( \frac{(\triangle t^{(n)})^{c_{se}}}{c_{se}+1}- \frac{(\triangle t^{(n)})^{2c_{se}}}{(2c_{se}+1)\tau_{se}^{c_{se}}} \Big)

2Analytic test

To test the developed SimPEG-EMIP code, we compare our numerical solution with an analytic solution. A halfspace earth is assumed. The conductivity of the halfspace is 0.05 S/m and its SE parameters are: ηse\eta_{se}=0.7, τse\tau_{se}=4ms, csec_{se}=0.6. Corresponding Cole-Cole parameters are: ηcc\eta_{cc}=0.8, τcc\tau_{cc}=0.005s, cccc_{cc}=0.6. For the spatial discretization, a 2D cylindrically symmetric mesh is used; the smallest cell size is 6.5m × 5m. A horizontal source loop is located 30m above the surface. A step-off waveform is used for the input current and a horizontal receiver loop measuring the voltage (equivalent to -dbz/dtdb_z/dt) is coincident with the source loop. Data are measured in the off-time over the time-range: 10-2-10 ms. Fig. 2 shows comparison between analytic and numerical solutions; they match well except for a small shift in the time of the zero-crossing, the two solutions are in good agreement.

Comparison of numerical and analytic solutions for halfspace earth. SE parameters of the halfspace earth are \siginf=0.05S/m, \eta_{se}=0.7, \tau_{se}=4ms, c_{se}=0.6; corresponding Cole-Cole parameters are: \eta_{cc}=0.8, \tau_{cc}=5ms, c_{cc}=0.6. Lines and circles distinguish analytic and numerical solutions.

Figure 2:Comparison of numerical and analytic solutions for halfspace earth. SE parameters of the halfspace earth are σ\siginf=0.05S/m, ηse\eta_{se}=0.7, τse\tau_{se}=4ms, csec_{se}=0.6; corresponding Cole-Cole parameters are: ηcc\eta_{cc}=0.8, τcc\tau_{cc}=5ms, cccc_{cc}=0.6. Lines and circles distinguish analytic and numerical solutions.

References
  1. Marchant, D. (2015). Induced polarization effects in inductive source electromagnetic data [Phdthesis, University of British Columbia]. http://dx.doi.org/10.14288/1.0135704
  2. Hyman, J., Morel, J., Shashkov, M., & Steinberg, S. (2002). Mimetic Finite Difference Methods for Diffusion Equations. Computational Geosciences, 6(3), 333–352. 10.1023/A:1021282912658
  3. Haber, E. (2014). Computational Methods in Geophysical Electromagnetics. Society for Industrial.