electromagnetic geophysics across the scales

Lindsey Heagy

University of British Columbia Geophysical Inversion Facility

some important problems

have in common: electrical conductivity can be a diagnostic physical property

electrical conductivity / resistivity

A measure of how easily current passes through a material

- σ : conductivity [S/m]
- *ρ*: resistivity [Ωm]
- $\rho = 1/\sigma$

Depends on many factors

- Mineralogy
- Porosity
- Permeability
- Nature of pore fluid

geophysical experiments & physical properties

electromagnetic experiments

Sources:

- grounded or inductive
- controlled or natural

Waveform

harmonic
(FDEM)

• transient (TDEM)

Survey location

- airborne
- ground
- boreholes

physics: time-domain

physics: time-domain

current density

physics: frequency domain

high frequency ~ early times, low frequency ~ later times

skin depth

$$\delta = 503 \sqrt{\frac{\rho}{f}}$$

 ρ : resistivity [Ω m] f: frequency [Hz]

9

statement of the inverse problem

Given

- observations: d_j^{obs} , $j = 1, \dots, N$
- uncertainties: ϵ_j
- ability to forward model: $\mathcal{F}[m] = d$

Find the Earth model that gave rise to the data

statement of the inverse problem

Given

- observations: d_j^{obs} , $j = 1, \dots, N$
- uncertainties: ϵ_i
- ability to forward model: $\mathcal{F}[m] = d$

Inverse problem: Find an Earth model that fits those data and a-priori information

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$$

s.t. $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$

Simulation and parameter estimation in geophysics

common framework for simulations & inversions

accelerate research: build upon others work

facilitate reproducibility of results

build & deploy in python

open-source

Simulation and Parameter Estimation in Geophysics

An open source python package for simulation and gradient based parameter estimation in geophysical applications.

Geophysical Methods

Contribute to a growing community of geoscientists building an open foundation for geophysics. SimPEG provides a collection of geophysical simulation and inversion tools that are built in a consistent framework.

- Gravity
- Magnetics
- · Direct current resistivity
- Induced polarization
- Electromagnetics
 - Time domain
 - Frequency domain
 - Natural source (e.g.
 - Magnetotellurics)
 - Viscous remanent magnetization
- Richards Equation

Multi-scale EM geophysical methods

13

Multi-scale EM geophysical methods

important problems: scales and surveys

CO₂ sequestration, hydrocarbons: fine scales & large contrasts

ctivity (S/m)

steel casings: highly conductive, magnetic

grounded sources: helpful for exciting & detecting deep targets

minerals, geothermal: large scales & seeing deep

natural source: rely on lightning strikes, solar wind as our source (unknown strength)

Position of Westward Electrojet Boundaries of Eastward Electrojet March 13, 1989 Methodations Methodations

lightning

aurora

unexploded ordnance: small scales

near surface (or seafloor), need to detect & classify UXO vs clutter

Not UXO

popcan

A sign at the Goose Lake Range, on Okanagan Indian Band territory, warns of the presence of UXO. JEFF BASSETT/THE GLOBE AND MAIL

case studies

case studies

GEOSCIENTISTS without BORDERS®

Improving Water Security in Mon state, Myanmar via Geophysical Capacity Building

- Bring geophysical equipment to Mon state Myanmar
- Train local stakeholders
- Provide open-source software & educational resources

Devin Cowan

GOLDER

Doug Oldenburg

Kevin Fan

Michael (Max)

Seogi Kang

Lindsev Heady

groundwater in Myanmar: important components

7 step framework for case studies

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

Open source software and resources

• Jupyter notebook "apps" for concepts and data processing

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

Phayar Ngoteto Village

In 2018: 1D inversion suggested aquifer at 30-50 m

- Well drilled to ~60 m: no significant water In 2020 (before covid...):
 - return and conduct a 2D survey

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

 $\label{eq:main} \begin{array}{l} \text{Main diagnostic:} \\ \text{Water bearing region} \sim 40\text{-}140 \ \Omega \text{m} \end{array}$

Hydrogeological Unit	Resistivity (Ωm)
Alluvium and laterite (dry)	200-800
Alluvium and laterite (saturated)	30
Sand aquifer	50-100
Clay aquitard	10-20
Bedrock (eg. granite)	500-1000
Fractured/Weathered bedrock (with fresh water)	40-400

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

data plotted in pseudosections

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

5.3e+02 (EC) 4.1e+02 (EC) 2.5e+02 (EC) 2.5e+02 (EC) 1.5e+02 (EC) 1.2e+02 (EC) 9.3e+01 (EC) 5.7e+01 (EC) 5.7e+01 (EC) 4.5e+01 (EC)

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

Inversion: estimate a model of the subsurface $\min_{\mathbf{m}} \phi(\mathbf{m}) = \phi_d(\mathbf{m}) + \beta \phi_m(\mathbf{m})$ s.t. $\phi_d \le \phi_d^* \quad \mathbf{m}_L \le \mathbf{m} \le \mathbf{m}_U$

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

7 step framework

- Setup
- Physical properties
- Survey
- Data
- Processing
- Interpretation
- Synthesis

Field surveys at 23+ villages by engineers, geoscientists in Myanmar

Acquired data, interpreted, spotted drill holes using open source software

>1000 gph

case studies

Tli Kwi Cho (TKC) Kimberlite complex

Geophysical discovery in 90's: airborne magnetic and electromagnetic data

2 kimberlite pipes

physical properties at TKC

Glacial till PK VK Lake sediments HK Basement

Rock type	Glacial till	Host rock	нк	VK	РК
Density	Moderate	Moderate	Low	Low	Low
Susceptibility	None	None	High	Low-moderate	Low-moderate
Conductivity	Moderate-high	Low	Low-moderate	Moderate-high	Moderate-high
Chargeability	Low	Low	?	?	?

- Overall kimberlite: low density
- HK: high susceptibility
- VK and PK:
 - low-moderate susceptibility
 - moderate-high conductivity

TKC: surveys

Airborne data

System	Year	Data
DIGHEM	1992	FEM, mag
Falcon	2001	Grav grad
AeroTEM II	2003	TEM, mag
VTEM	2004	TEM, mag

Ground data as well: NanoTEM, magnetics, gravity

AeroTEM

DIGHEM

VTEM

TKC: data

Airborne data

- invert to obtain physical property models
- interpret to build quasi-geology model
- published in 3 papers by the GIF group

<u>Devriese *et al.* 2017,</u> <u>Fournier *et al.* 2017, Kang *et al.* 2017</u>

VTEM mag

TKC: electromagnetics

Focus on DIGHEM and VTEM data

Negatives in VTEM data is challenge...

IP effects in time domain EM data

Negative transients in VTEM presents a challenge \rightarrow motivates research EM-decoupling: IP = Observation – Fundamental (EM)

Seogi Kang

TKC: IP inversion (early time)

Raw IP at 130 micro-s Recovered 3D model IP data Elevation (m): 311 m DO-18 A-A' 500 A1 invert $(\det (pV/A-m^4))$ Elevation (m) 200 311 134521 A2 $d^{IP}(t) = G\tilde{\eta}(t)$ ę A3 $G(\sigma_{\infty})$: Sensitivity function 556855 $\tilde{\eta}$: Pseudo-chargeability conductivity 557299 557744 -1.2Northing (m) 7133949 anomaly Easting (m) Kang et al. (2016) $\begin{array}{c} 400 \\ \hline 600 \\ 800 \\ \hline \text{Easting (m)} \\ +5.568 \times 10^5 \end{array}$ 200 DO-27 B-B' 500 Observation Fundamental Observed at 130 micro-s Estimated at 130 micro-s Elevation (m) 200 311 A3 $+7.133 \times 10^{6}$ R' B 1600 1400 7133378 (m) 1200 1000 800 4.8 ₁,*m*-*F*/*Ad*) tp/ /dt (*pV/A*-8 557299 556855 557744 ු අ -8 800 Easting (m) 600 556855 557299 557744 0.000 200.000 66.667 133.333 Easting (m) Pseudo-chargeability (s⁻¹) 400 600 800 Easting (m) +5.568×10⁵ 400 600 800 Easting (m) +5.568×105 200 200 IP = Observation – Fundamental (EM)

TKC: IP inversion (late time)

Raw IP at 410 micro-s

IP data 0.06 0.04invert $^{+0.00}_{-0.02}$ $^{+0.01}_{-0.04}$ ($^{+}M^{+}$) 7134521 $d^{IP}(t) = G\tilde{\eta}(t)$ A3 -0.06 $G(\sigma_{\infty})$: Sensitivity function $\tilde{\eta}$: Pseudo-chargeability -0.08 Northing (m) 7133949 -0.10 Kang et al. (2016) 400 200 600 800 Easting (m) +5.568×105 Observation **Fundamental** Observed at 410 micro-s Estimated at 410 micro-s $+7.133 \times 10$ 1600 0.392 1400 0.336 7133378 Northing (m) 1500 0.280 (*P*//*A*) **b**/ -0.02 P//Ad -0.04 dt 800 -B 0.168 ද 0.06 0.112600 -0.08 -0.10400 600 800 Easting (m) +5.568×10⁵ 400 600 800 Easting (m) +5.568×10⁵ 200 IP = Observation – Fundamental (EM)

Elevation (m): 311 m DO-18 A-A' 500 Elevation (m) 200 311 conductivity 557299 557744 $\tilde{\eta}_{E}$ anomalies anomaly Easting (m) DO-27 B-B' 500 Elevation (m) 200 311 A3 B B 8 556855 557299 557744 Easting (m) 0.000 556855 557299 557744 6.933 13.867 Easting (m) Pseudo-chargeability (s⁻¹)

Recovered 3D model

A quasi-geology model from physical properties

Rock type	Glacial till	Host rock	нк	VK	РК
Density	Moderate	Moderate	Low	Low	Low
Susceptibility	None	None	High	Low-moderate	Low-moderate
Conductivity	Moderate-high	Low	Low-moderate	Moderate-high	Moderate-high
Chargeability	Low	Low	?	?	?
			S	mall time	large time
	constant		constant		

- Independently inverted multiple airborne geophysical data sets in 3D, built a representative 3D rock model
- Importance of conductivity, chargeability & related computational tools

case studies

Time-domain EM response of a UXO

$$d(\mathbf{r}_R, t) = \mathbf{H}_R(\mathbf{r}, \mathbf{r}_R) \cdot \mathbf{P}(t) \cdot \mathbf{H}_T(\mathbf{r}, \mathbf{r}_T) \qquad \mathbf{L}(t) = \begin{pmatrix} L_1 & \\ & L_2 \\ & & L_3 \end{pmatrix}$$
$$\mathbf{P}(t) = \mathbf{A}(\phi, \theta, \psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^\top(\phi, \theta, \psi) \qquad \mathbf{L}(t) = \begin{pmatrix} L_1 & \\ & L_2 \\ & & L_3 \end{pmatrix}$$

Time-domain EM response of a UXO

$$d(\mathbf{r}_{R},t) = \mathbf{H}_{R}(\mathbf{r},\mathbf{r}_{R}) \cdot \mathbf{P}(t) \cdot \mathbf{H}_{T}(\mathbf{r},\mathbf{r}_{T})$$
$$\mathbf{P}(t) = \mathbf{A}(\phi,\theta,\psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^{\top}(\phi,\theta,\psi)$$
$$\mathbf{L}(t) = \begin{pmatrix} L_{1} \\ L_{2} \\ L_{3} \end{pmatrix}$$

traditional approach: use inversion to get these and then classify by comparing **L**(t) with ordnance library

Survey and system

UltraTEMA-4 system:

- 4 transmitters
- 12 receivers (3-component)
- 27 time channels
- Height above seabed: ~1 m

Can we classify directly from EM data?

Convolutional neural networks (CNNs)

• Convolutional filters look at spatial / temporal features in the data

Training EM data for UXO classification:

- Available library of ordnance objects with polarizations
- Fast geophysical simulations

Convolutional Neural Networks (CNNs)

Supervised classification problem

provided data with labels, construct a function (network) that outputs labels given input data

Convolutional Neural Networks (CNNs)

How do we translate these things to the UXO classification problem? Neural network Features Input Class predicted probabilities Χ S $\mathbf{T}_{nrx} p(j|\mathbf{s})$ conv2d conv3d restructure conv2d nrx 16 ntx×3 nrx nrx nc true nrx nx nx nx NIX ntx = 4, number of transmitters nrx = 12, number of receiver cubes nx nt = 27, number of time channels nx = 15, number of positions in spatial (nx imes nrx imes nt imes (ntx imes 3))window (along track) 50 nc = 8, number of classes

Defining label masks

Input features are created by using a sliding window:

Input features are created by using a sliding window:

Input features are created by using a sliding window:

54

Input features are created by using a sliding window:

Input features are created by using a sliding window:

Single acquisition line with three objects (classification results)

Training dataset: dipole forward model

7 classes:

- background
- 155 mm
- 105 mm
- 81 mm
- 60 mm
- 40 mm
- clutter

of realizations:

- Training (multi-class): 400,000
- Validation: 10,000

Randomly assign:

- Target class
- Location (x, y, z)
- Orientation (ϕ, θ, ψ)
- Noise level: approximate from background areas in the field data

Clutter design

Physics-based parameterization of EM decay:

$$L(t) = kt^{-\beta}exp(-t/\gamma)$$

9 parameters in total:

- 1. Estimate values for UXOs in ordnance library
- 2. Define a distance threshold
- 3. Fill the remaining space with clutter objects

Field data - Sequim Bay test site (2022)

- 7 acquisition lines
- Current workflow requires seawater response removed
- Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)

Get correlated noise using a binary classifier

Classification map (output of CNN)

• Discriminated clutter

- Discriminated clutter
- Did not miss any UXO

- Discriminated clutter
- Did not miss any UXO
- Classified to closest object in training dataset

UXO classification

Key points:

- image-segmentation architecture
- clutter design and correlated noise are important

Some limitations:

- not trained to handle multiple objects in the same window
- objects used to generate synthetic data should be close to the objects on the field

Future work:

- explore multi-target scenario (maybe instance segmentation)
- combining with traditional approach

important problems

Electrical conductivity can be a diagnostic physical property in many settings

Electromagnetic methods can be useful across a wide range of scales

Numerical tools for simulation, inversion, machine learning enable understanding of physical responses, invaluable for interpretation of data

Thank you!

lheagy@eoas.ubc.ca

