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2D DC resistivity inversion

Conductivity Model
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L2 Norm Inversion
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Sparse Norm Inversion
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Case 1

Deep Image Prior Inversion (DIP-Inv) Result
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Outline

1. Background: Concept of Deep Image Prior (DIP)

2. Motivation: Are the prior statistics implicitly included in the
Convolutional Neural Network (CNN) useful for geophysical inversion?

3. Proposed pipeline: Difference between the conventional method and
the DIP-Inv

4. Results
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Regularization in Geophysical inversion

Explicit regularization:
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* Tikhonov regularization

 E ——
* Parametric inversions
* Using neural networks in a

supervised manner

Lopez-Alvis, J., Nguyen, F., Looms, M. C., & Hermans, T. (2022). Geophysical inversion using a
variational autoencoder to model an assembled spatial prior uncertainty. Journal of Geophysical Research:
Solid Earth, 127, €2021JB022581. https://do1. org/10.1029/2021JB022581




Regularization in Geophysical inversion

Explicit regularization: Implicit regularization:
* Tikhonov regularization

 Parametric inversions

 Using neural networks in a
supervised manner I)

Prior statistics NE—) Regularization

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, (2017), “Deep Image Prior,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9446-9454.



DIP (Deep |mage pr’lor’) » training set free

* unsupervised learning

* Inverse Problems in Computer Vision (CV)

iti¥ and rep[ese atio

i@ <B16B ondl

DIP result

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, (2017), “Deep Image Prior,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9446-9454.




DIP (Deep |mage pr’lor’) » training set free

* unsupervised learning

* Inverse Problem in Computer Vision (CV)

DIP result
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Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, (2017), “Deep Image Prior,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9446-9454.
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DIP (Deep image prior) . training set free

* unsupervised learning

Solving inverse problems by learning self-similarity:

mﬁin |fo(z) — zol|? z. input; xo: corrupted image

Output y
f(z) uy < u,

{T

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, (2017), “Deep Image Prior,” Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9446-9454.
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Key information from DIP in CV

» Structure of a generator network is sufficient to capture a great deal of
low-level image statistics before any learning.

* Structure of the network imposes a strong prior (regularization etffect)!




Motivation

* Will it work in Geophysical inversion?

» Demonstrated potential in seismic FWI
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oY I

Weiqiang Zhu, Kailai Xu, Eric Darve, Biondo Biondi, and Gregory C. Beroza, (2022), "Integrating deep neural
networks with full-waveform inversion: Reparameterization, regularization, and uncertainty quantification,"
GEOPHYSICS 87: R93-R109.



3. Proposed Pipeline




Log-conductivity

F: simulate with SImPEG

»| Forward Simulation S Lk » Loss (dPr¢, d°%)
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Update m

Conventional inversion:

T (Pa(m) + B (m)) = " (‘Wa (F(m) — d“bs)‘z "'ﬁ(”s‘M(m_mmf)‘p + ax[Wy (m)|‘1+azllflf3(m)lq))



L: CNN with trainable weights
F: simulate with SImPEG

ra EHidden Blocks with » m » Forward Simulation » JPred |- » Loss (df"’md,d”m]

' trainable w
inabl A »
E;?;Z?b © | Log-conductivity :
: Update w |
———————————— Ysing Adamoptimizatiomrnethod = — — - — — — — — -

Conventional inversion:
" (Pa(m) + Bpm(m)) = " (\Wd (F(m) — d°®%)|" + B(as|We(m — myep)| + alWy ()19 + azIWz(m)lq))

DIP-Inv inversion :
mlin(l — B (Wa(F(Ly(2)) — dﬂbs))z + B(Lw(2) — mref)l



Results: Dipole-Dipole survey in 2D DCR inversion

Case 1
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Results: Dipole-Dipole survey in 2D DCR inversion

Case 1.1 Case 1.2 Case 1.3
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The DIP-Inv method performs better than the conventional method 1n terms of the dip
angle recovery and the recovery of the top layer.




Results: Dipole-Dipole survey in 2D DCR inversion

Caze 2.1
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The DIP-Inv method performs better than the conventional method 1n terms of
distinguishing two closed-placed compact targets.
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Further Discussion

» The observed implicit regularization effect 1s partly from the bi-linear
upsampling Operator.

* The output value of the bi-linear interpolation in each pixel 1s a (distance-
based) weighted sum of the surrounding pixels.

Up-Sampling /\

2D Convolution ‘
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Destination image Source image

https://machinethink.net/blog/coreml-upsampling/



Replace Bi-linear by Nearest or
ConvTranspose

Case 2
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oice of architecture

Case 2
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Conclusions & Future research

DIP-Inv: uses CNN for implicit regularization
* Training data free

Case 1
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Promising results for dipping, compact targets

e Smoothness 1n conventional inversions
promote axes-aligned structures
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Connect SIMPEG & PyTorch

* Approach can be adapted to other
physics
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Future research
* requires many iterations T —
* lots to explore: network architectures, ...
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Thanks!

Please come to our session on Wednesday, 13
December 2023; 14:10-15:40 PST, at MC,
eLightning Theater V, Hall D —South

Information about the preprints the codes for
reproducing the results can be found on the IPoster.



