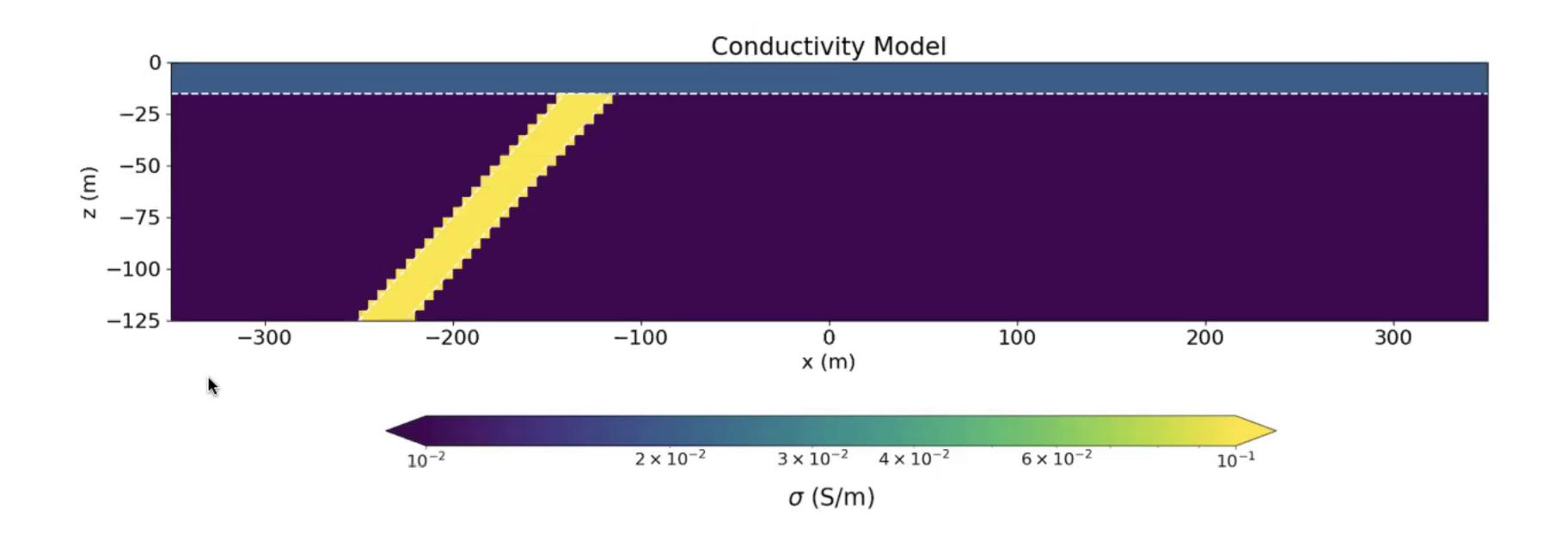


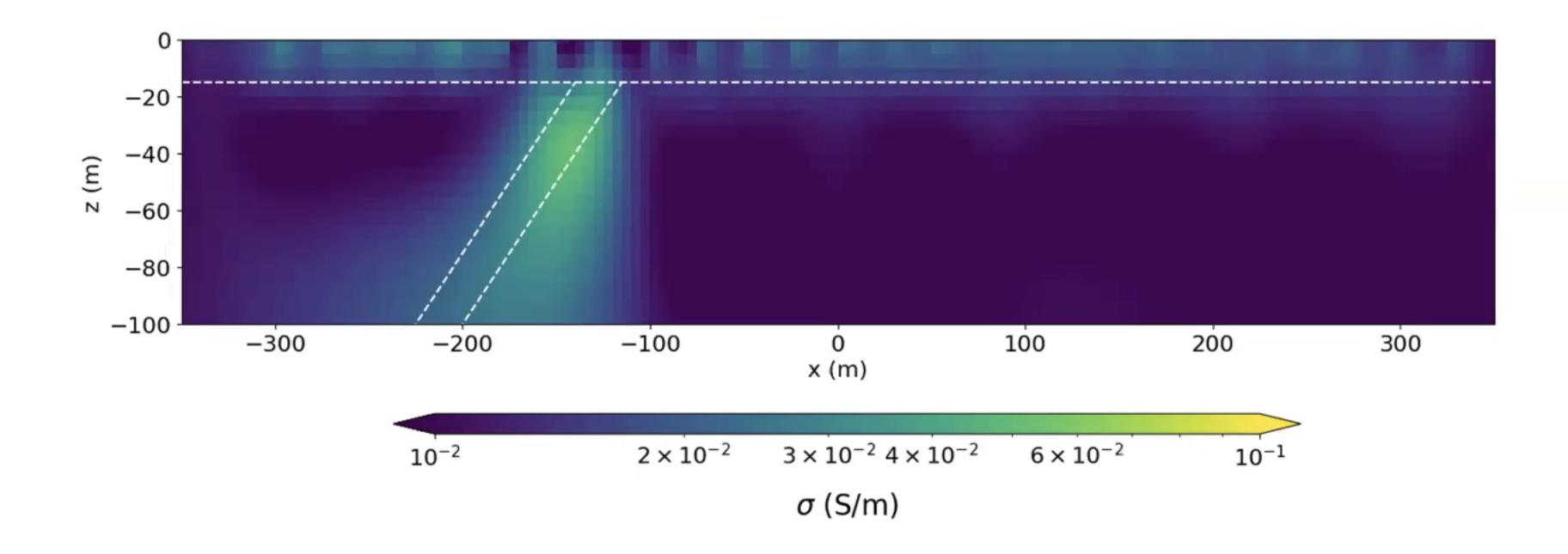
Leveraging Convolutional Neural Networks for implicit regularization in DC resistivity inversions (DIP-Inv)

Anran Xu and Lindsey J. Heagy December 11-15, 2023

2D DC resistivity inversion



L2 Norm Inversion



Sparse Norm Inversion

-40

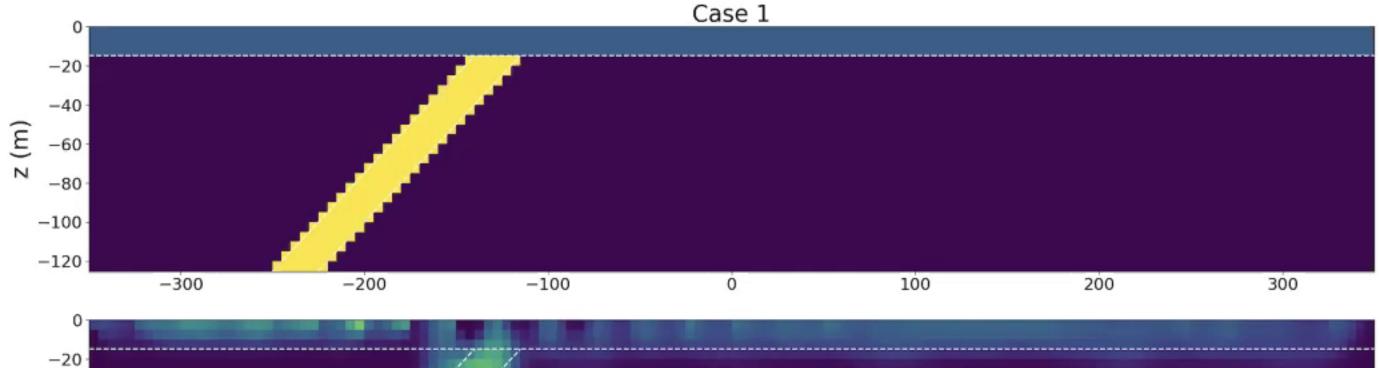
-60

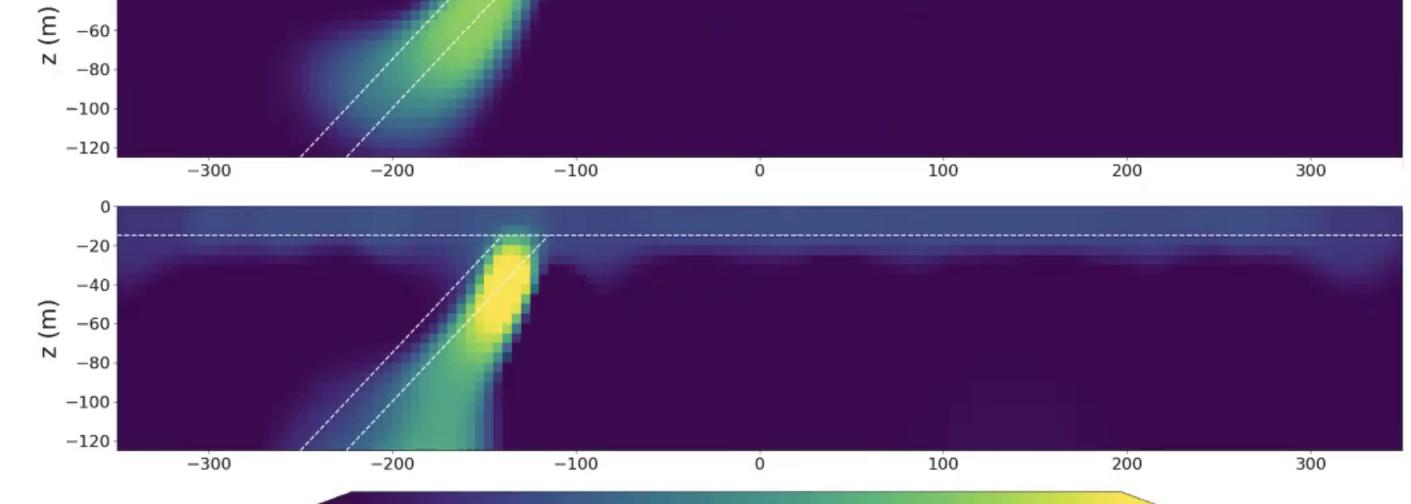
 10^{-2}

True Model

Predicted model (without sensitivity weighting)

Predicted model (with sensitivity weighting)





 3×10^{-2}

 σ (S/m)

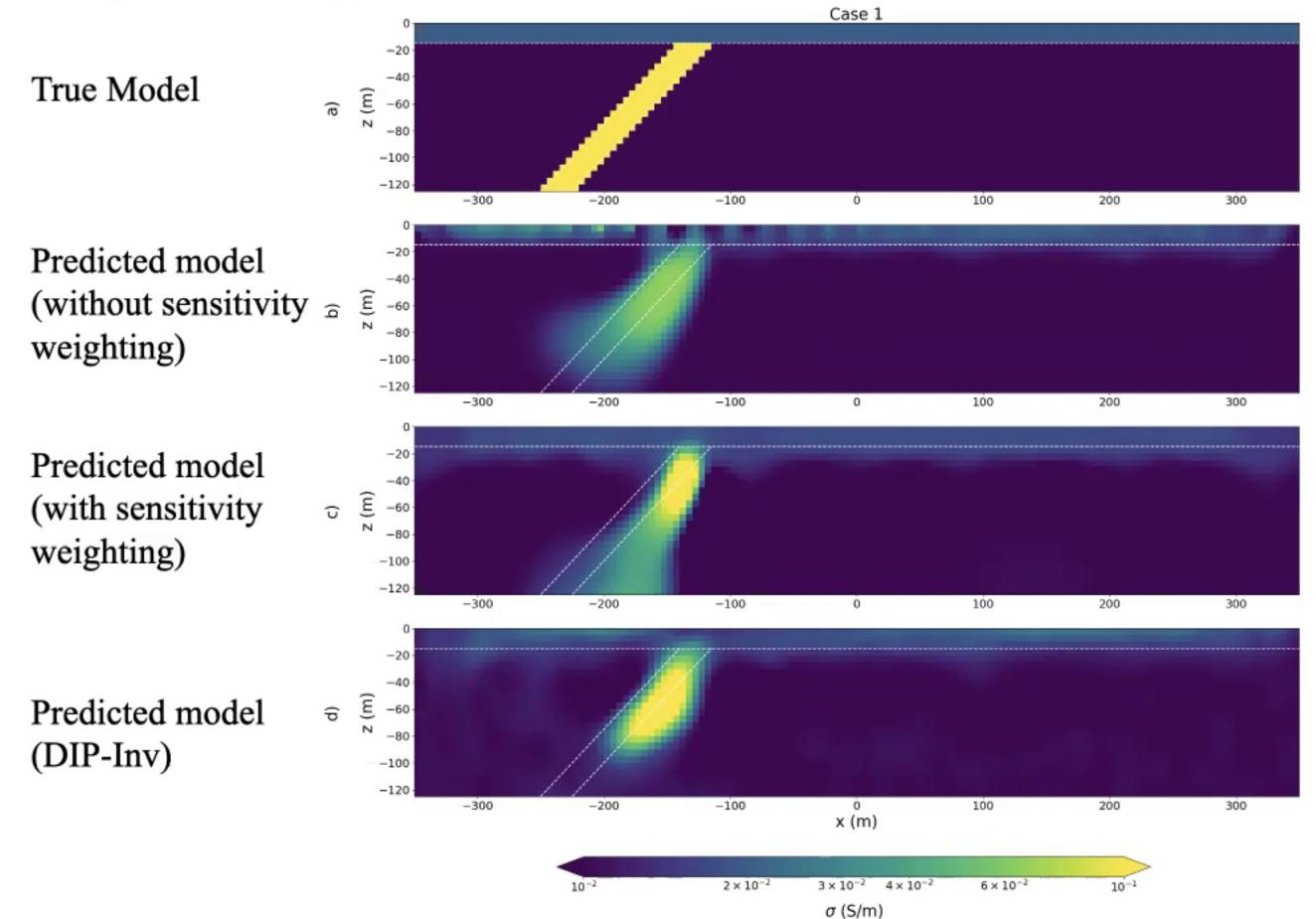
 4×10^{-2}

 6×10^{-2}

 10^{-1}

 2×10^{-2}

Deep Image Prior Inversion (DIP-Inv) Result



Outline

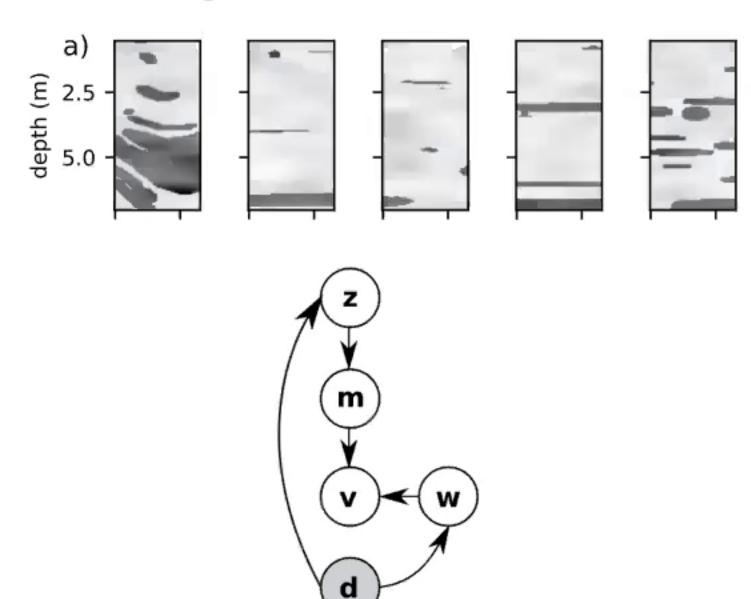
- 1. Background: Concept of Deep Image Prior (DIP)
- 2. Motivation: Are the prior statistics implicitly included in the Convolutional Neural Network (CNN) useful for geophysical inversion?
- 3. Proposed pipeline: Difference between the conventional method and the DIP-Inv
- 4. Results

Regularization in Geophysical inversion

Explicit regularization:

- Tikhonov regularization
- Parametric inversions
- Using neural networks in a supervised manner

• ...



Lopez-Alvis, J., Nguyen, F., Looms, M. C., & Hermans, T. (2022). Geophysical inversion using a variational autoencoder to model an assembled spatial prior uncertainty. Journal of Geophysical Research: Solid Earth, 127, e2021JB022581. https://doi.org/10.1029/2021JB022581

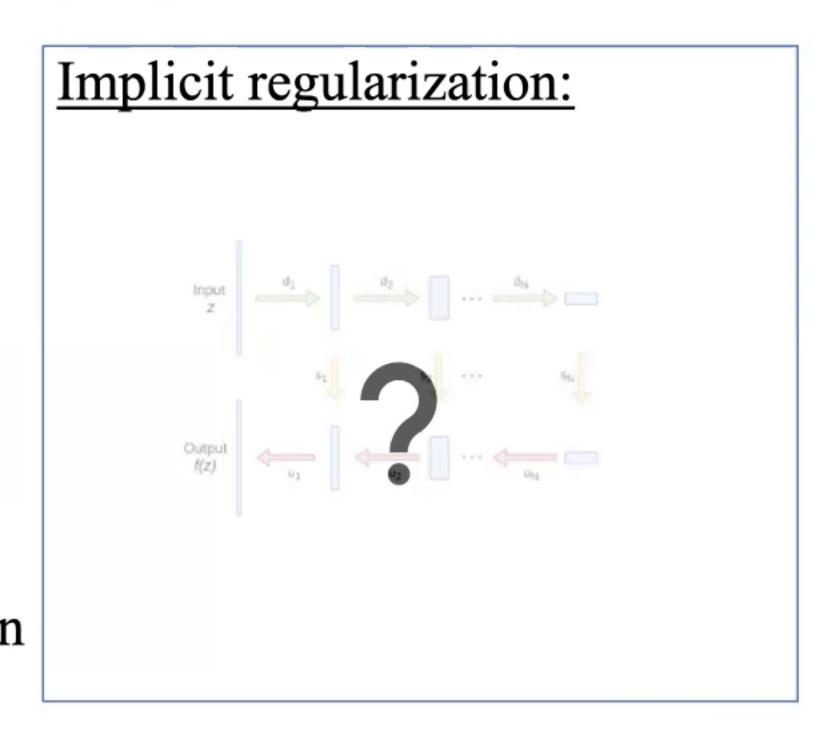
Regularization in Geophysical inversion

Explicit regularization:

- Tikhonov regularization
- Parametric inversions
- Using neural networks in a supervised manner

• ...

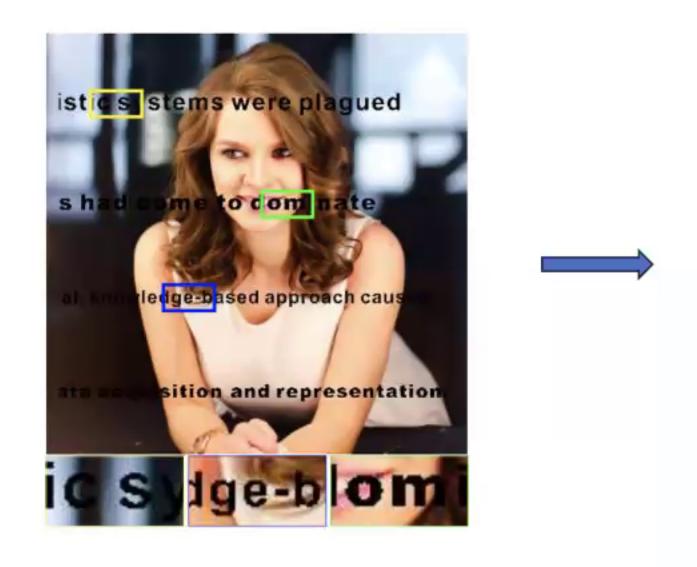
Prior statistics Regularization

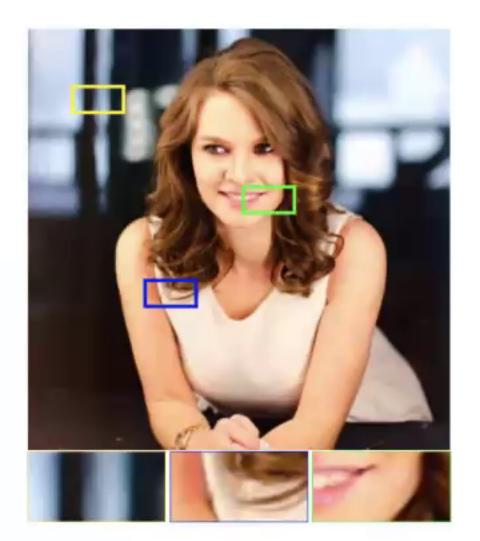


DIP (Deep image prior)

• Inverse Problems in Computer Vision (CV)

- training set free
- unsupervised learning



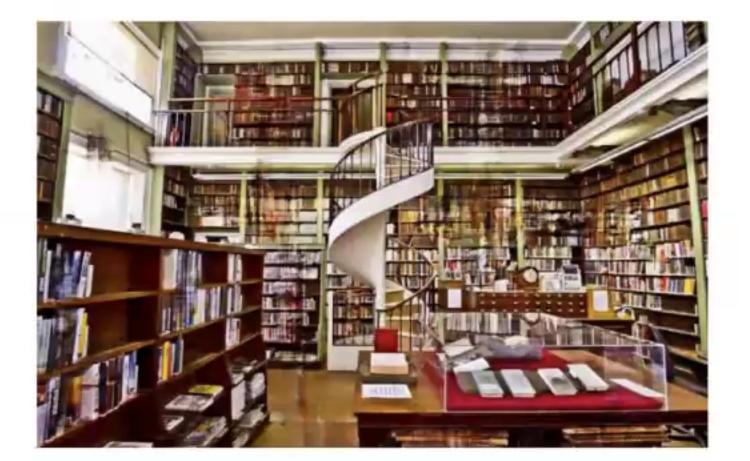


DIP result

DIP (Deep image prior)

• Inverse Problem in Computer Vision (CV)

- training set free
- unsupervised learning



DIP result

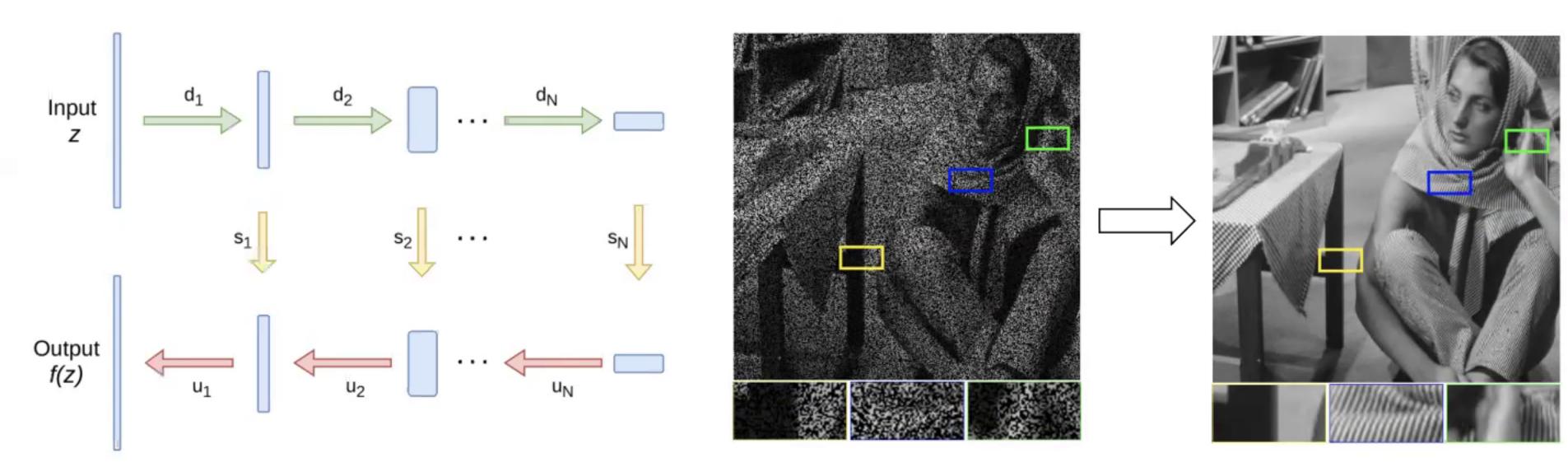
DIP (Deep image prior)

- training set free
- unsupervised learning

Solving inverse problems by learning self-similarity:

$$\min_{ heta} \|f_{ heta}(z) - x_0\|^2$$

 $\min_{\theta} \|f_{\theta}(z) - x_0\|^2$ z: input; x_0 : corrupted image



Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky, (2017), "Deep Image Prior," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9446-9454.

Key information from DIP in CV

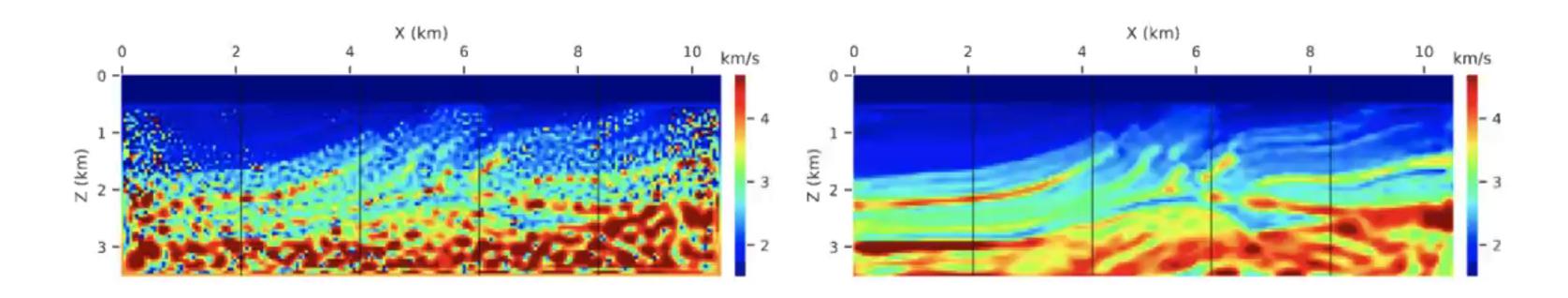
• Structure of a generator network is sufficient to capture a great deal of low-level image statistics before any learning.

• Structure of the network imposes a strong prior (regularization effect)!

Motivation

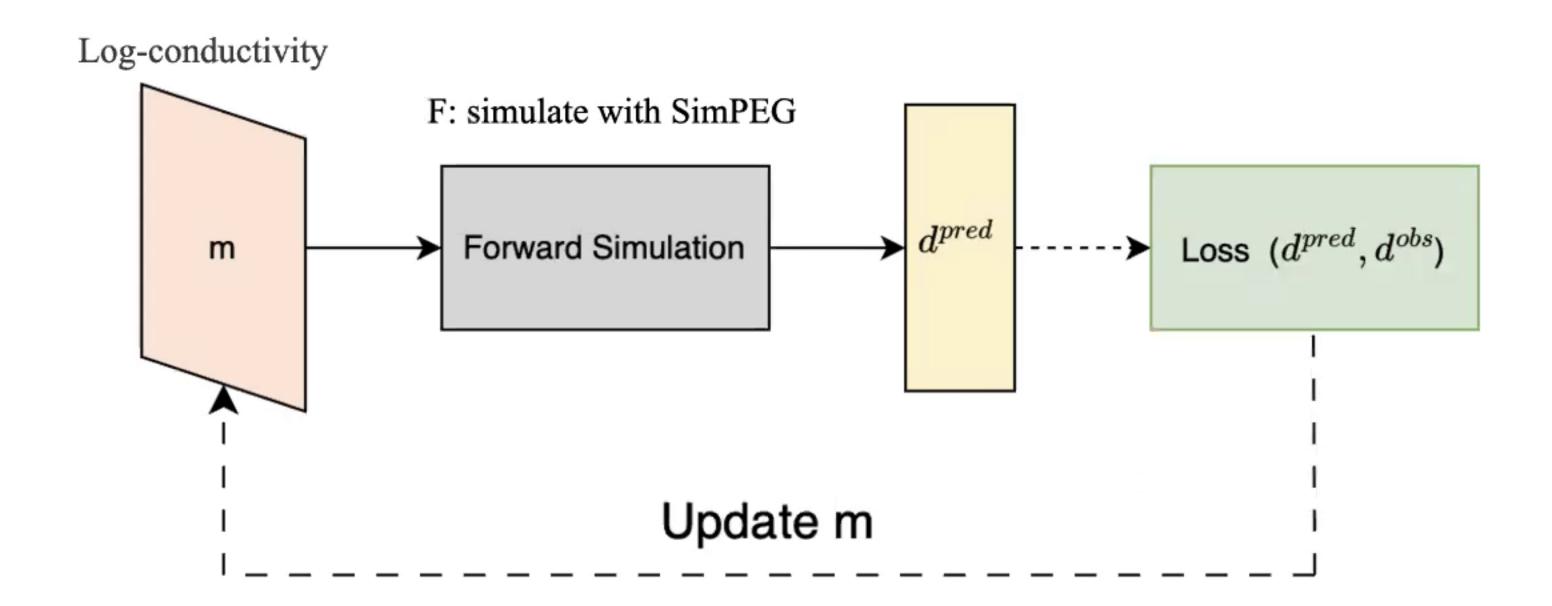
• Will it work in Geophysical inversion?

Demonstrated potential in seismic FWI



Weiqiang Zhu, Kailai Xu, Eric Darve, Biondo Biondi, and Gregory C. Beroza, (2022), "Integrating deep neural networks with full-waveform inversion: Reparameterization, regularization, and uncertainty quantification," *GEOPHYSICS* 87: R93-R109.

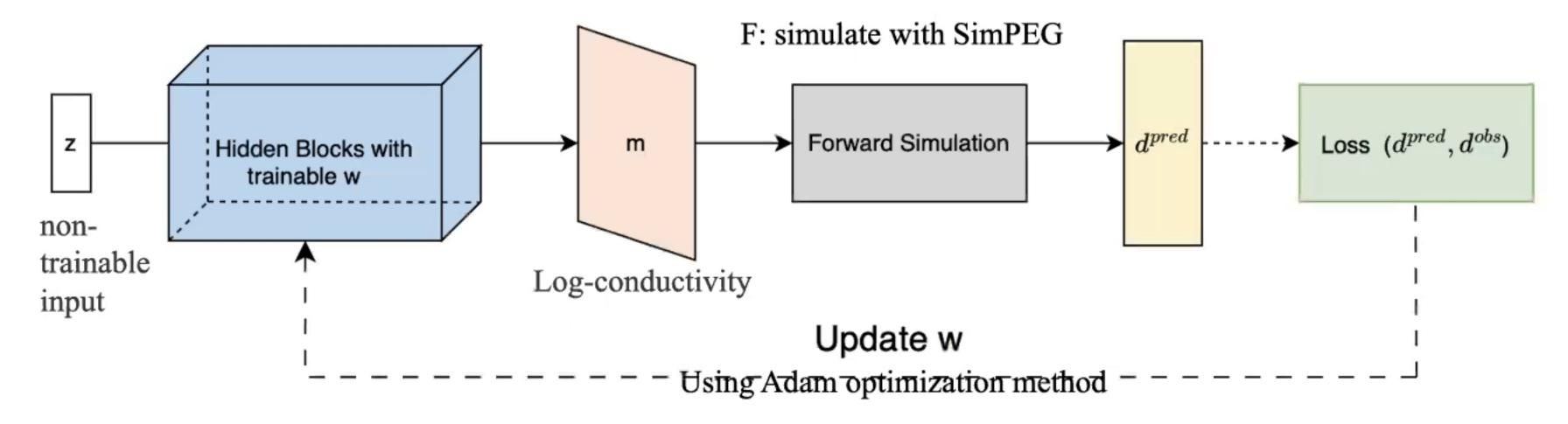
3. Proposed Pipeline



Conventional inversion:

$$_{m}^{min}\left(\phi_{d}(m)+\beta\phi_{m}(m)\right)=\ _{m}^{min}\left(\left|W_{d}\left(F(m)\ -\ d^{obs}\right)\right|^{2}+\beta\left(\alpha_{s}\left|W_{s}\left(m-m_{ref}\right)\right|^{p}+\ \alpha_{x}|W_{x}\left(m\right)|^{q}+\alpha_{z}|W_{z}(m)|^{q}\right)\right)$$

L: CNN with trainable weights



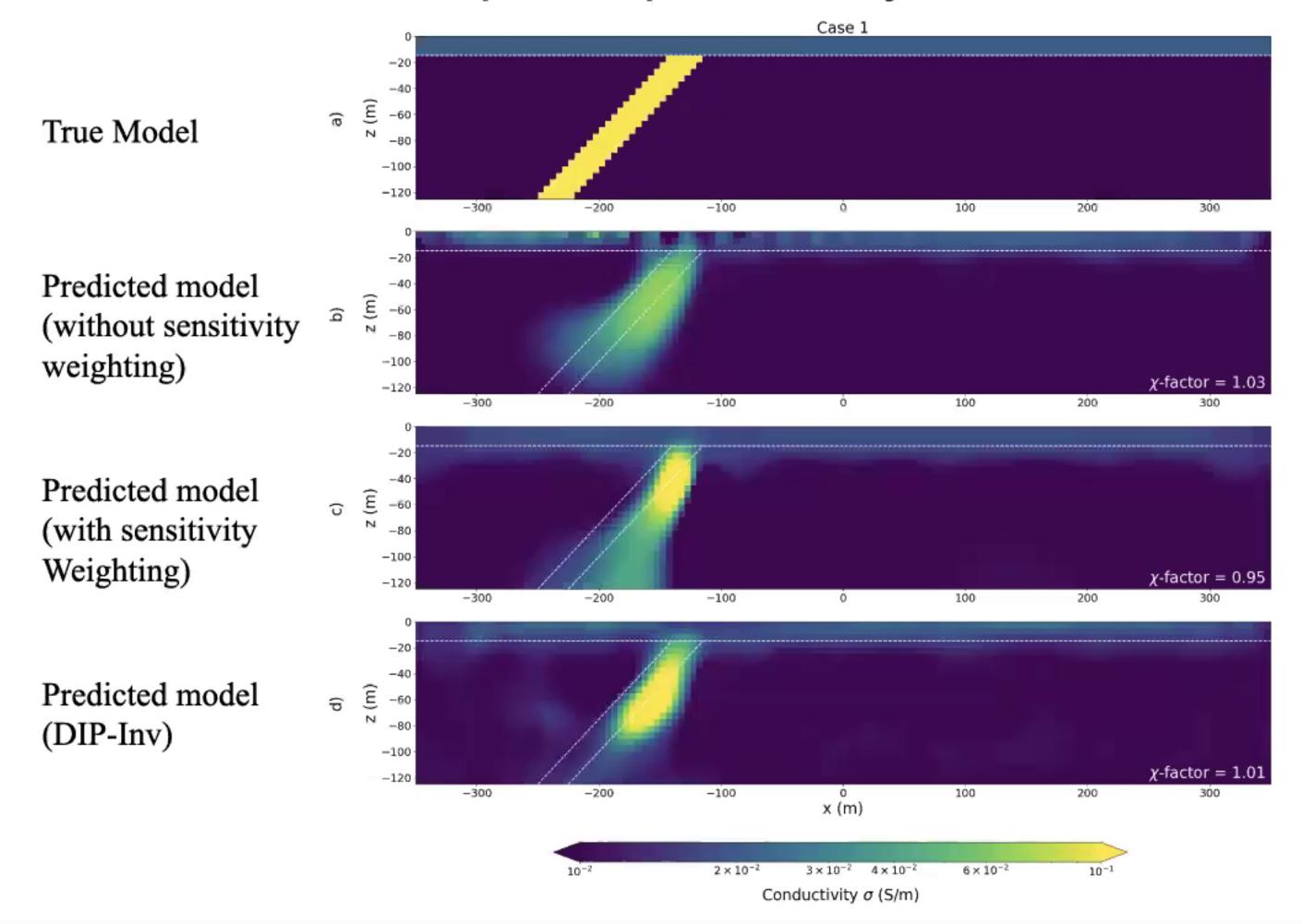
Conventional inversion:

$$_{m}^{min}\left(\phi_{d}(m)+\beta\phi_{m}(m)\right)=\\ _{m}^{min}\left(\left|W_{d}\left(F(m)-d^{obs}\right)\right|^{2}+\beta\left(\alpha_{s}\left|W_{s}\left(m-m_{ref}\right)\right|^{p}+\alpha_{x}\left|W_{x}\left(m\right)\right|^{q}+\alpha_{z}\left|W_{z}\left(m\right)\right|^{q}\right)\right)$$

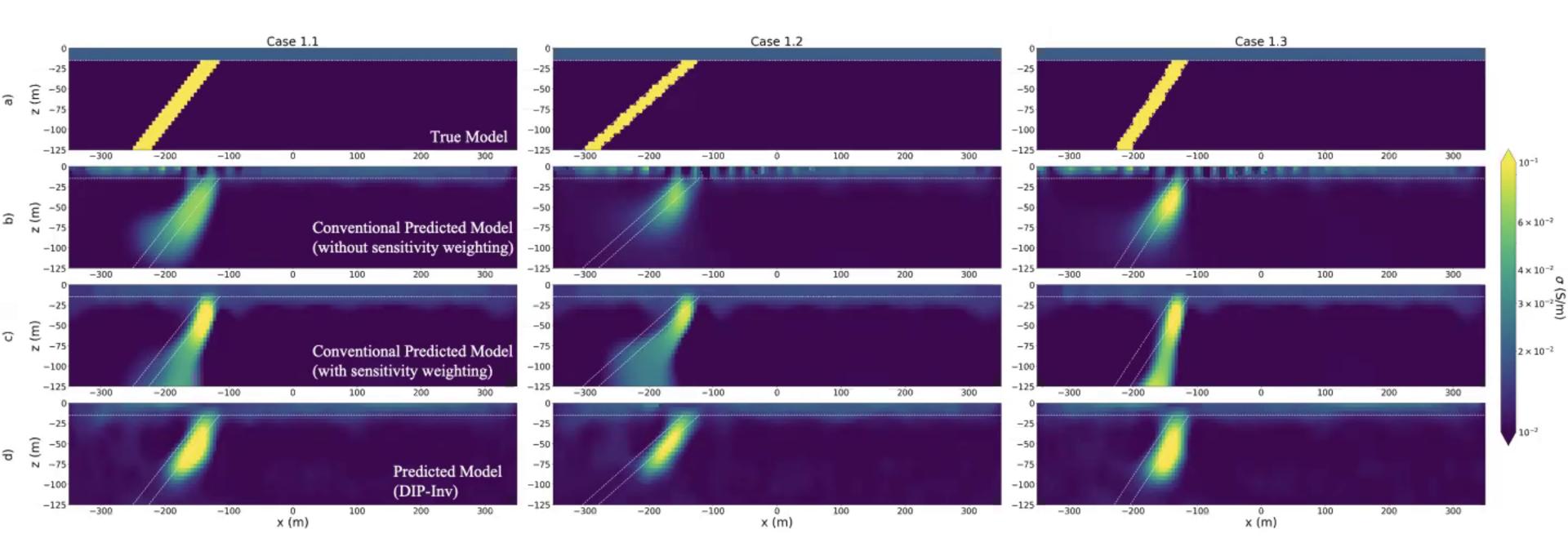
DIP-Inv inversion:

$$\min_{w} (1 - \beta) (W_d(F(L_w(z)) - d^{obs}))^2 + \beta (L_w(z) - m_{ref})^1$$

Results: Dipole-Dipole survey in 2D DCR inversion

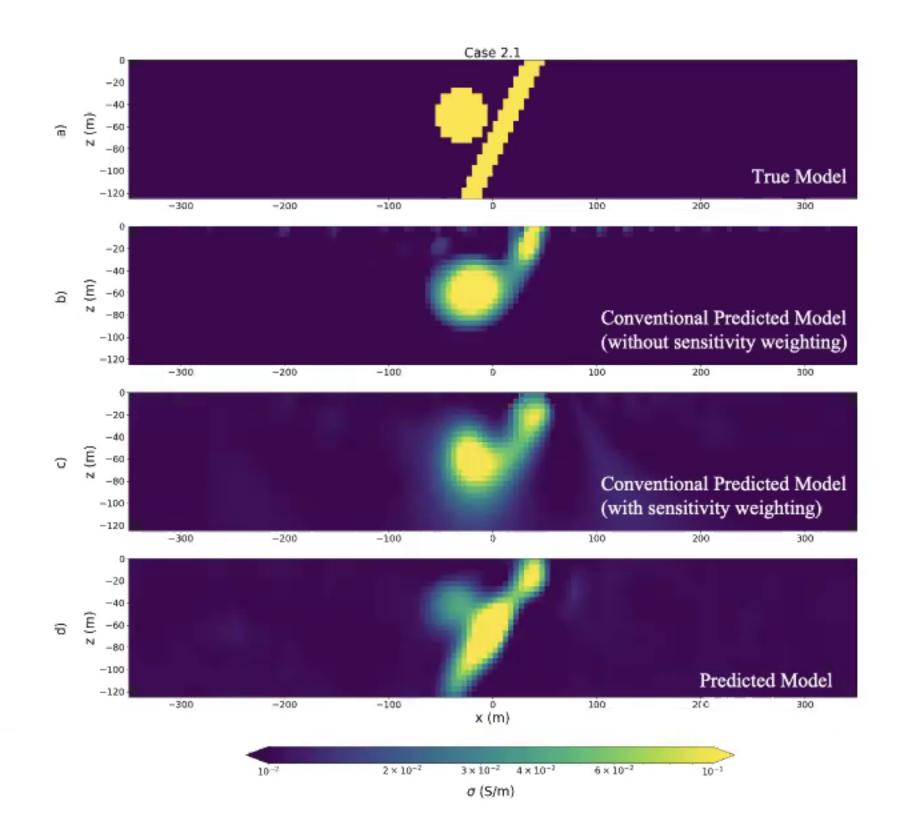


Results: Dipole-Dipole survey in 2D DCR inversion



The DIP-Inv method performs better than the conventional method in terms of the dip angle recovery and the recovery of the top layer.

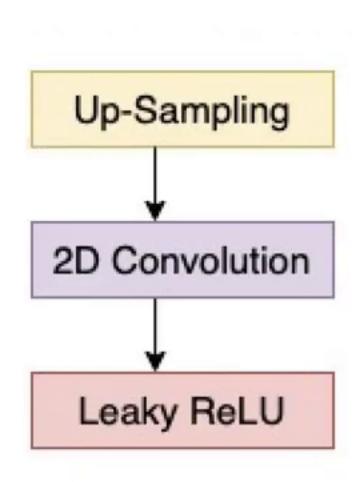
Results: Dipole-Dipole survey in 2D DCR inversion

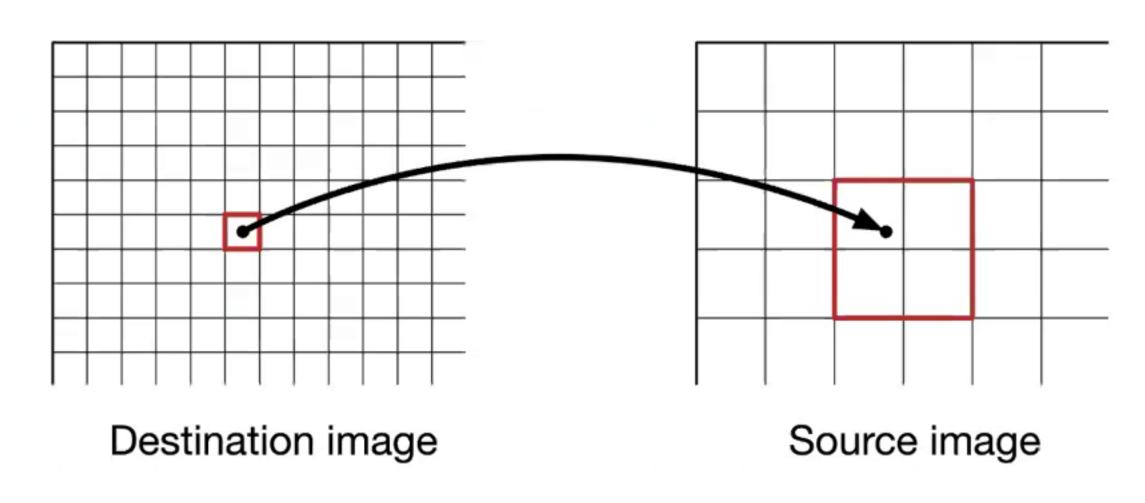


The DIP-Inv method performs better than the conventional method in terms of distinguishing two closed-placed compact targets.

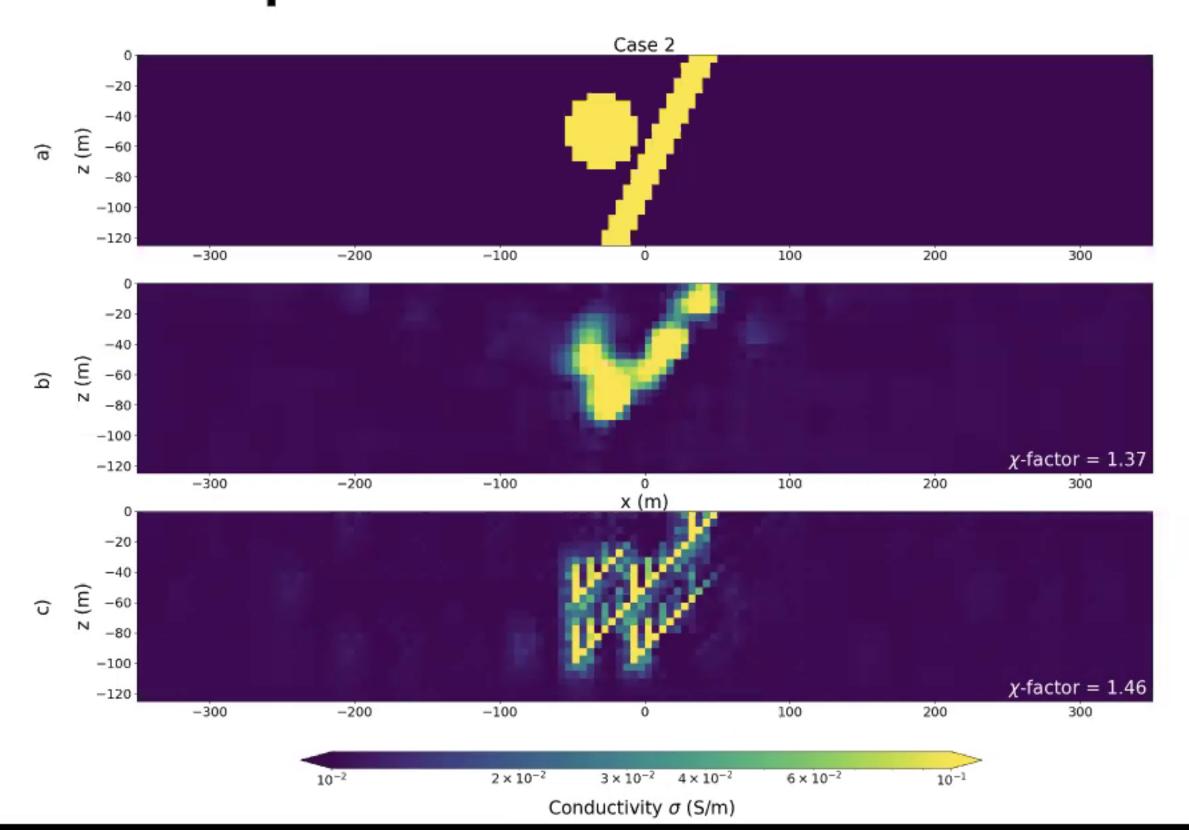
Further Discussion

- The observed implicit regularization effect is partly from the bi-linear upsampling Operator.
- The output value of the bi-linear interpolation in each pixel is a (distance-based) weighted sum of the surrounding pixels.

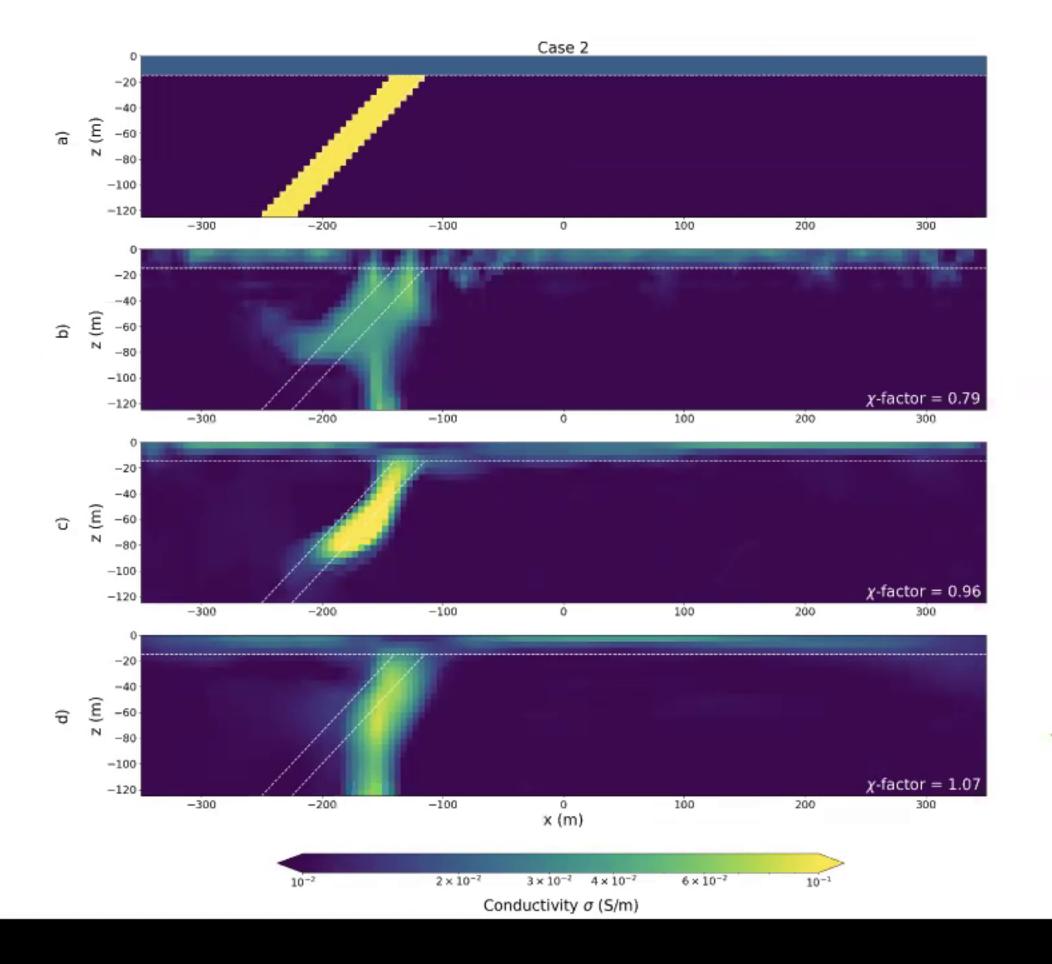




Replace Bi-linear by Nearest or ConvTranspose



Choice of architecture



Increasing the number of hidden layers

Conclusions & Future research

DIP-Inv: uses CNN for implicit regularization

Training data free

Promising results for dipping, compact targets

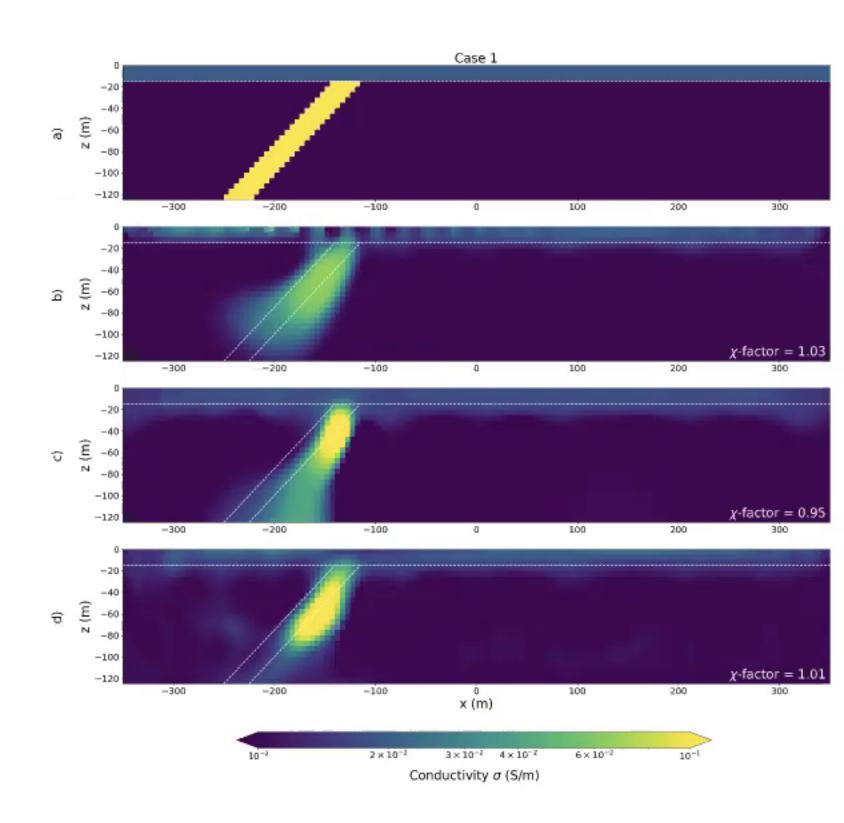
 Smoothness in conventional inversions promote axes-aligned structures

Connect SimPEG & PyTorch

Approach can be adapted to other physics

Future research

- requires many iterations
- lots to explore: network architectures, ...



Thanks!

Please come to our session on Wednesday, 13 December 2023; 14:10-15:40 PST, at MC, eLightning Theater V, Hall D –South

Information about the preprints the codes for reproducing the results can be found on the iPoster.