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SUMMARY

Self-demagnetization effects complicate the interpretation of
magnetic data for highly susceptible targets by altering both
the magnitude and direction of the resultant total magnetiza-
tion. While magnetic vector inversion (MVI) can model self-
demagnetization effects, the number of model parameters is
tripled as compared to isotropic susceptibility inversion, in-
creasing the non-uniqueness of the inverse problem. We show
that if appropriate prior information is available, modeling de-
magnetization in terms of susceptibility can improve recov-
ered models. We apply sparse inversion with bound constraints
to adequately simulate self-demagnetization effects, and com-
pare results with compact MVI on a synthetic model.

INTRODUCTION AND MOTIVATION

Magnetic geophysical surveys are diagnostic of the magneti-
zation of the subsurface. If there is no remanent magnetiza-
tion, the relationship between the resultant magnetization M
and susceptibility χ is:

M = χH (1)

where H is composed of the primary geomagnetic field H0
and a secondary magnetic field HS. Standard susceptibility
inversions assume that HS plays a negligible role in induced
magnetization as compared to the primary field. The relation-
ship between the subsurface susceptibility and magnetization
is then approximated as:

M = χH0 (2)

(Li and Oldenburg, 1996). This assumes a uniform magneti-
zation in the direction of the ambient geomagnetic field and
is only applicable if the magnetic susceptibility χ is low. Be-
cause a linear relationship is assumed between M and χ , we
refer to the associated forward modeling and inversion as lin-
ear in the remainder of this paper.

If the magnetic susceptibility is high, the secondary term χHS
is significant. For an isolated body, this term tends to reduce
the magnetization in comparison to the linear approximation.
This phenomenon is therefore often called self-demagnetization.
Even for a uniformly susceptible body, Hs varies depending on
the shape of the body and how the body intersects the ambient
geomagnetic field. As a result, Hs does not in general run anti-
parallel to H0, and self-demagnetization can have the effect of
rotating the direction of magnetization away from the inducing
field. Using standard susceptibility inversion when demagneti-
zation effects are present will therefore not only underestimate
the susceptibility of the subsurface but can also recover sus-
ceptible material in the wrong location.

Two forward modeling and inversion algorithms fully model
the physics of demagnetization. The first is MVI (Lelievre

and Oldenburg, 2009) which inverts for the total magnetiza-
tion and makes no assumption on the cause of magnetization.
Although MVI can model remanence, demagnetization, and
anisotropy, the recovered model M is a vector field. There-
fore, the discrete magnetization model contains 3 parameters
per cell, adding non-uniqueness to the inverse problem. The
second algorithm inverts in terms of scalar susceptibility and is
capable of modeling the demagnetization effect (Lelievre and
Oldenburg, 2006). This accounts for a nonlinear relationship
between M and χ , and we refer to the associated forward mod-
eling and inversion as nonlinear in the remainder of this paper.
We compare the two methods on a synthetic plate model in-
spired by the Osborne deposit in Queensland, Australia and
demonstrate that for compact and highly susceptible bodies,
nonlinear susceptibility inversion can outperform MVI if ap-
propriate prior information is available.

FORWARD MODELING

We develop a finite-volume forward modeling and inversion
code capable of modeling high-susceptibility and remanence
or total resultant magnetization (MVI) using the open-source
framework SimPEG (Cockett et al., 2015). We forward model
data for a plate-like ironstone body inspired by the Osborne
deposit, which has a uniform susceptibility of χ = 6 SI and
no remanent magnetization (Figure 1). The plate dips at a 45◦

angle and extends a total of 200 meters in the y direction. The
ambient geomagnetic field has a strength of 52000nT, a −55◦

inclination, and a 45◦ declination from clockwise from the +y
direction.

We first numerically compute the magnetization of the plate.
Figure 1 shows a cross section of the magnetization through
the center of the plate computed from the nonlinear and lin-
ear forward modelings. When accounting for demagnetization
with the nonlinear modeling (top panel), the magnetization is
rotated away from the background geomagnetic field toward
the long axis of the body. The amplitude of the magnetiza-
tion is also significantly decreased throughout the plate. Al-
though the magnetization is relatively uniform in amplitude
and direction, variation in both can be seen near the edges of
the plate. This is consistent with the fact that the demagnetiz-
ing field is in general non-uniform for non-ellipsoidal bodies
(Clark, 2014).

Figure 2 shows a profile of TMI data running near the center of
the plate. The data are simulated using both the linear forward
modeling and nonlinear forward modeling. Additionally, data
is simulated with magnetic vector forward modeling using the
magnetization computed from the nonlinear forward model-
ing. Figure 2(a) shows a drastic reduction in the amplitude of
the anomaly when applying the nonlinear forward modeling.
This illustrates a saturation effect, whereby further increasing
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Inversion methods to account for demagnetization

Figure 1: Computed magnetizations of a plate when ac-
counting for self-demagnetization using the non-linear code
(top panel) and when neglecting self demagnetization using
the standard linear susceptibility code (bottom panel).

χ has a diminishing effect on M. This indicates that the linear
inversion code will grossly underestimate the susceptibility of
highly susceptible targets. Figure 2(b) shows the TMI data nor-
malized by their respective maximums. The demagnetization
significantly changes the characteristic of the TMI anomaly,
indicating that the linear inversion will not only underestimate
the susceptibility but will also alter the location of the plate
in the recovered model. The alignment of the magnetic vector
forward modeling with the nonlinear forward modeling in both
panels illustrates the ability of MVI to model the demagnetiza-
tion effect. To test the inversion algorithms, we simulate a grid
of magnetic data 25 meters above the top of the plate, adding
a small amount of random noise.

SMOOTH INVERSION

We formulate the inverse problem as an optimization problem
with the objective function:

φ = φd +βφm (3)

where φd measures how well the forward modeled data fits the
true noisy data and φm is a regularization term (Oldenburg and
Li, 2005; Tikhonov and Arsenin, 1977). φm has a general form
of:

φm = αs

∫
ws|m−mre f |pdv+

∑
j=x,y,z

α j

∫
w j

∣∣∣∣∂m
∂ i

∣∣∣∣q dv (4)

where the first term punishes deviation from a reference model,
and the remaining terms punish roughness in the model.

Figure 2: (a) Simulated TMI data running above the plate.
The blue line is data accounting for demagnetization. The
green line is data neglecting demagnetization. The red line
is magnetic vector forward modeled data using the magneti-
zation from the demagnetization corrected numerical solution.
(b) The same data normalized by their respective maximum
values.

Potential field data has no inherent depth resolution, and the
weighting functions ws and w j are set to counteract the de-
cay of the fields and allow for models to be recovered at depth.
While the depth weighting strategy of Li and Oldenburg (1996)
is appropriate for the low susceptibility approximation, here
we use sensitivity weighting to account for the nonlinear re-
lationship between susceptibility and magnetization. This al-
lows for the recovery of higher susceptibility values and com-
pensates for the saturation effect discussed in the previous sec-
tion.

The choice of 2 for p and q in equation 4 is the commonly
applied L2 norm for both the smallness and smoothness terms
in the regularization. This choice of norm is computationally
convenient but tends to punish outliers. This means inversion
routines utilizing this choice of norm are often not able to re-
cover models that are compact or that have sharp boundaries.
Additionally, the L2 norm tends to underestimate the recov-
ered physical property values (Oldenburg and Li, 2005; Sun
and Wei, 2020).

We utilize the L2 regularization and invert the simulated geo-
physical data using a linear susceptibility inversion, MVI, and
a non-linear susceptibility inversion. The recovered models
are shown in Figure 3. Although all three recovered models
place magnetic material in the right general location, they give
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Inversion methods to account for demagnetization

Figure 3: Cross section through the recovered L2 models for
each inversion method: (a) Linear, (b) MVI, (c) Nonlinear

poor indication of the dip and structure of the plate. The lin-
ear inversion (Figure 3(a)) recovers a more vertical structure in
the center of the plate. This is consistent with initial magnetic
interpretations at Osborne, where not accounting for demag-
netization indicated a more vertical dip and therefore misled
drilling (Clark, 2000). The magnetic vector inversion (Fig-
ure 3(b)) is able to fit the data with a much smoother model
with lower susceptibility values. This illustrates the additional
ambiguity introduced in MVI due to the unconstrained magne-
tization direction. The nonlinear inversion (Figure 3(c)) only
slightly improves the magnitude and location of the recovered
susceptibility model as compared to the linear inversion. At
the recovered susceptibility values, the demagnetization effect
is not significant, motivating the need to recover a more com-
pact model.

SPARSE NORM INVERSION

The smooth inversion results indicate that for compact bodies
standard L2 inversions may not adequately simulate demagne-
tization effects. To better recover a compact and sharper model
we apply sparse norms to both the smallness and smoothness
terms in equation 4. To apply these norms we use the itera-
tively re-weighted least squares approach of Fournier and Old-
enburg (2019). This approach can approximate any value cho-
sen for p or q between 0 and 2. For all three models we choose
values of 1/2 for p and q. This choice of norm was empiri-
cally found to achieve the desired compactness and sharpness
while not having the same tendency as the L0 norm to become
stuck in local minima. To apply sparsity to the Cartesian mag-
netic vector models, we implement the method of Ghalehnoee
and Ansari (2021) which enforces sparsity on the amplitude of
magnetization rather than Cartesian components in the small-
ness term as follows:

φsmall = αs

∫
ws

∣∣∣√m2
x +m2

y +m2
z

∣∣∣p
dv (5)

To enable the recovery of a more uniformly magnetized MVI
model, we improve upon the smoothness term in this method
by applying sparsity on the amplitude of the model gradients
rather than on the gradient of the amplitude or the gradients of
the individual Cartesian components:

φsmooth =
∑
j=xyz

α j

∫
w j

∣∣∣∣∣∣
√√√√∑

k=xyz

∂mk

∂ i

2
∣∣∣∣∣∣
q

dv (6)

Although the use of sparse norms can improve recovered mod-
els, they also can tend to over-compact recovered models (Li
et al., 2018). This can be exacerbated by sensitivity weight-
ing for the non-linear magnetic problem, as higher levels of
susceptibility have a decreasing effect on the data, meaning
that the corresponding sensitivity weights for highly suscepti-
ble cells will be lower. We therefore apply bound constraints
to limit the upper value of susceptibility for the non-linear in-
version.

Figure 4 shows the sparse inversion results for the three differ-
ent methods, where an upper bound of 8 SI has been applied
to the non-linear susceptibility inversion. The low susceptibil-
ity inversion (Figure 4(a)) is now more compact and reaches
slightly higher susceptibility values, but the general location
and structure is consistent with the smooth linear model. This
is because the direction of magnetization and resulting shape
of the TMI anomaly is not altered by increasing the susceptibil-
ity values for the low susceptibility approximation. The sparse
MVI model (Figure 4(b)) recovers a direction of magnetiza-
tion that is mostly in line with the inducing field at the center
of the target. As a result, it indicates a dip consistent with the
linear approximation. The sparse nonlinear inversion (Figure
4(c)) is able to adequately replicate the self-demagnetization
phenomenon of the plate at the high recovered susceptibility
values. As a result, the nonlinear susceptibility model gives
the best indication of the dip and structure of the plate. To test
the sensitivity of the recovered model to bound constraints, we
apply the nonlinear inversion approach with upper values of
susceptibility of 2, 5, and 8 SI. While all three models do give
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Inversion methods to account for demagnetization

Figure 4: Cross section of the recovered L1/2 models for each
inversion method: (a) Linear, (b) MVI, (c) Nonlinear

a better indication of the dip, there is significant improvement
in both the dip and volume of the recovered models for the sus-
ceptibility values within a few SI of the true susceptibility of
the plate (6 SI).

DISCUSSION AND CONCLUSIONS

While magnetic vector modeling and nonlinear forward mod-
eling can account for demagnetization, there are inherent diffi-
culties in each inversion method. Although the nonlinear in-
version outperformed compact MVI in this circumstance, a
significant amount of prior information was necessary to ob-
tain the best inversion result. We assumed that the susceptibil-
ity model was both compact and relatively uniform. Addition-
ally, we assumed that our range of upper bounds for suscep-
tibility was near to the true anomaly and that remanence and
anisotropy were negligible.

Figure 5: Cross section of the recovered nonlinear L1/2 mod-
els using upper bound constraints of: (a) 2SI, (b) 5SI, (c) 8SI

If very high amplitude TMI anomalies or other geologic knowl-
edge indicate that self-demagnetization effects could be present,
running nonlinear susceptibility inversion with a variety of choices
of norms and bound constraints can be a good way to test hy-
potheses. Additionally, the ability to run nonlinear susceptibil-
ity inversion in combination with MVI results can be a useful
interpretive tool. If drill information is available, it can be used
to constrain the high susceptibility inversion. It is not straight-
forward to include this information in MVI, as magnetization
is influenced by the geometry of the body when susceptibilities
are large.
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