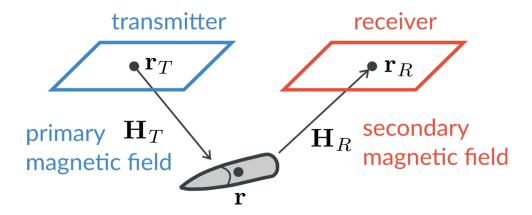
Using convolutional neural networks to classify UXO with multi-component electromagnetic induction data

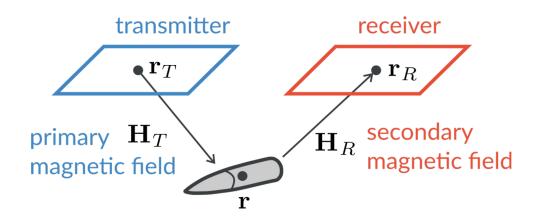
Jorge Lopez-Alvis¹, Lindsey J. Heagy¹, Douglas W. Oldenburg¹, Stephen Billings², Lin-Ping Song²

¹University of British Columbia, ²Black Tusk Geophysics, Inc.

Time-domain EM response of a UXO



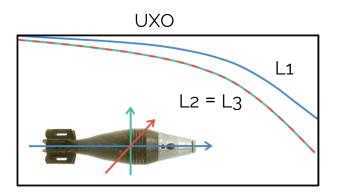
Time-domain EM response of a UXO

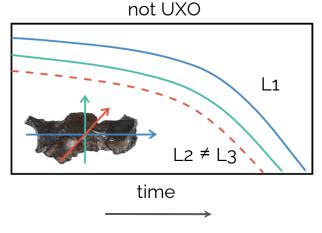


$$d(\mathbf{r}_R, t) = \mathbf{H}_R(\mathbf{r}, \mathbf{r}_R) \cdot \mathbf{P}(t) \cdot \mathbf{H}_T(\mathbf{r}, \mathbf{r}_T)$$

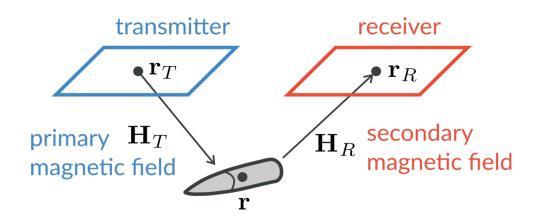
$$\mathbf{P}(t) = \mathbf{A}(\phi, \theta, \psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^{\top}(\phi, \theta, \psi)$$

$$\mathbf{L}(t) = \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$$





Time-domain EM response of a UXO

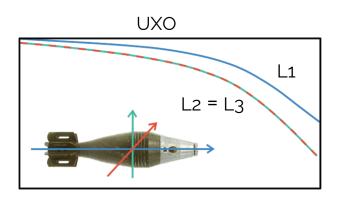


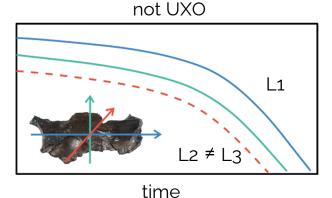
$$d(\mathbf{r}_R, t) = \mathbf{H}_R(\mathbf{r}, \mathbf{r}_R) \cdot \mathbf{P}(t) \cdot \mathbf{H}_T(\mathbf{r}, \mathbf{r}_T)$$

$$\mathbf{P}(t) = \mathbf{A}(\phi, \theta, \psi) \cdot \mathbf{L}(t) \cdot \mathbf{A}^{\top}(\phi, \theta, \psi)$$

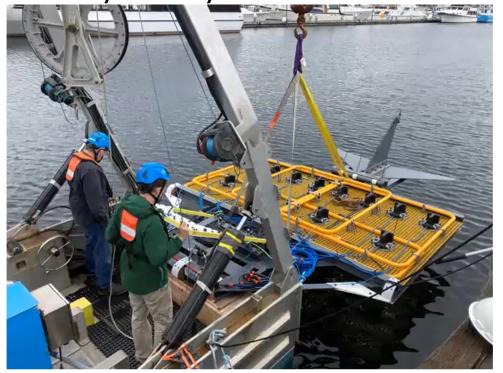
$$\mathbf{L}(t) = \begin{pmatrix} L_1 \\ L_2 \\ L_3 \end{pmatrix}$$

traditional approach: use inversion to get these and then classify by comparing **L**(t) with ordnance library





Survey and system



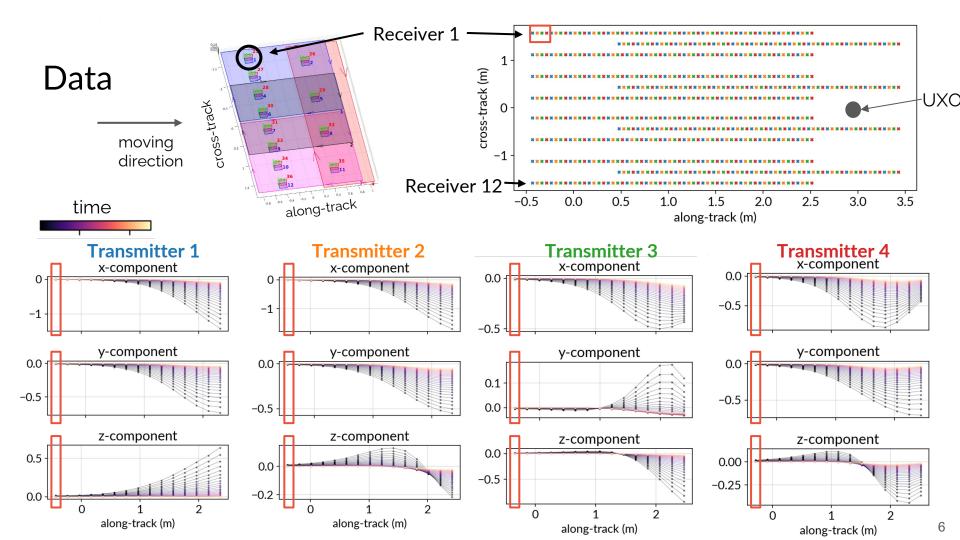
UltraTEMA-4 system:

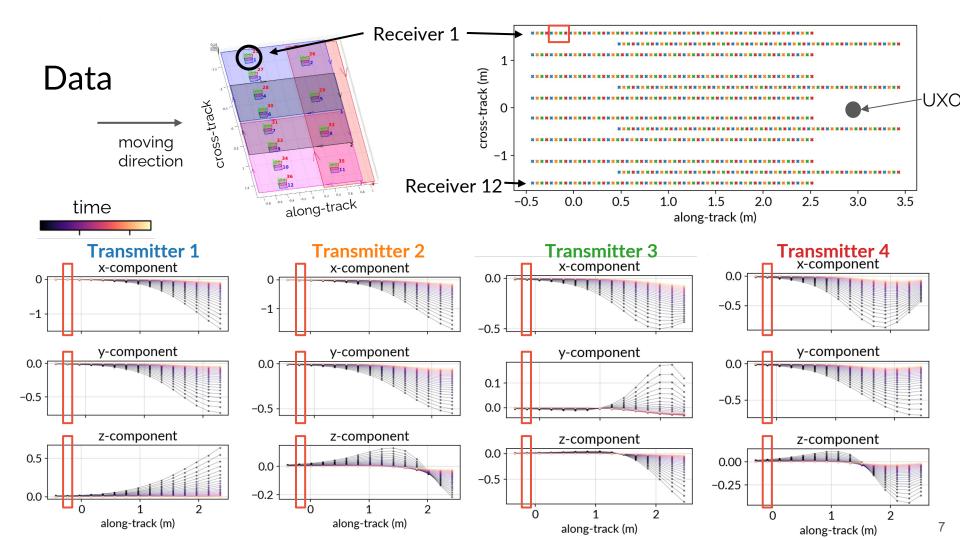
4 transmitters

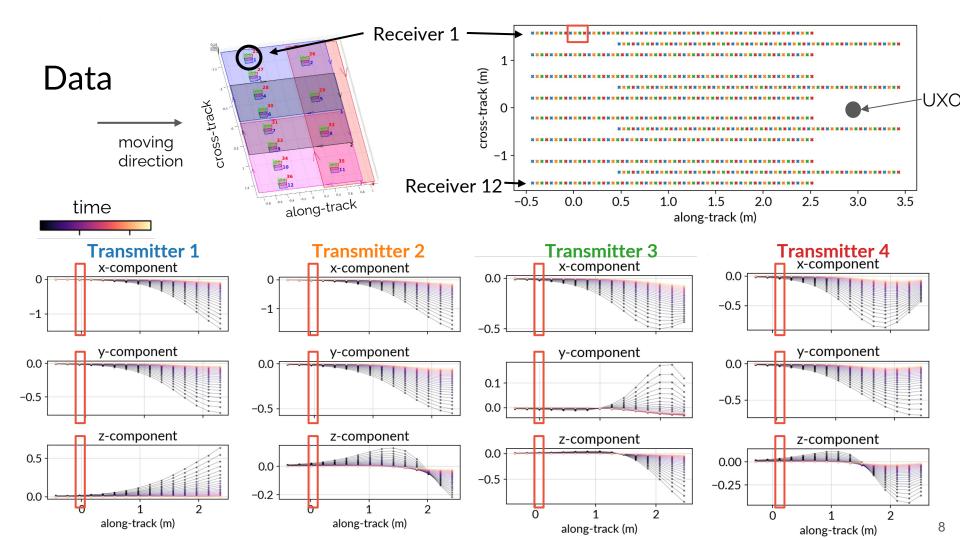
12 receivers (3-component)

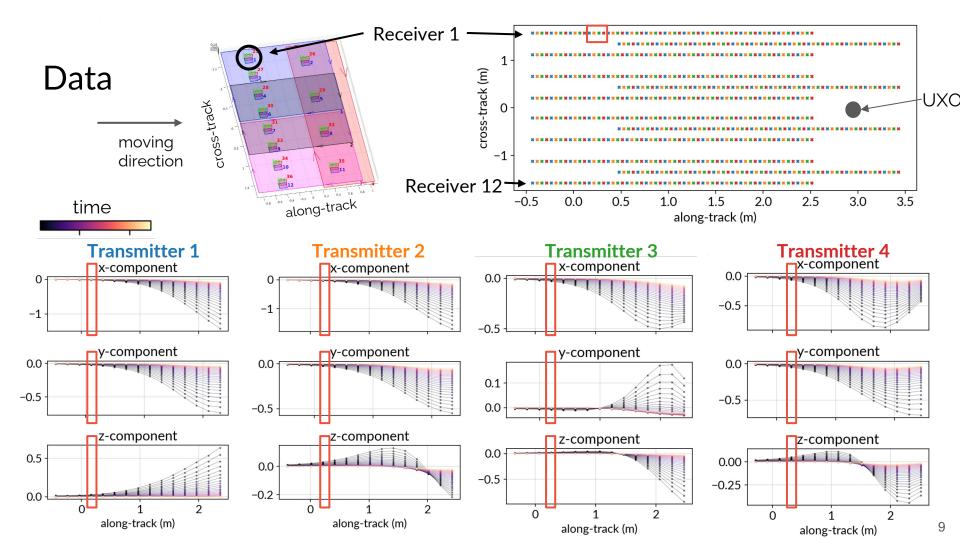
27 time channels

Height above seabed: ~1 m









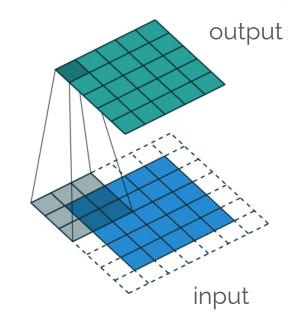
Can we classify directly from EM data?

Convolutional neural networks (CNNs)

 Convolutional filters look at spatial / temporal features in the data

Training EM data for UXO classification:

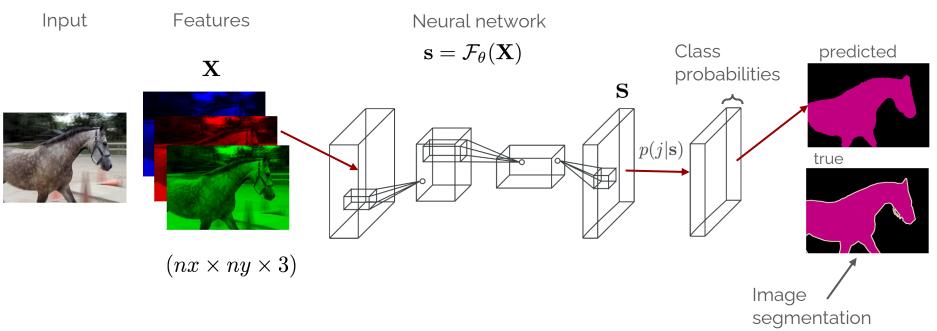
- Available library of ordnance objects with polarizations
- Fast geophysical simulations



Convolutional Neural Networks (CNNs)

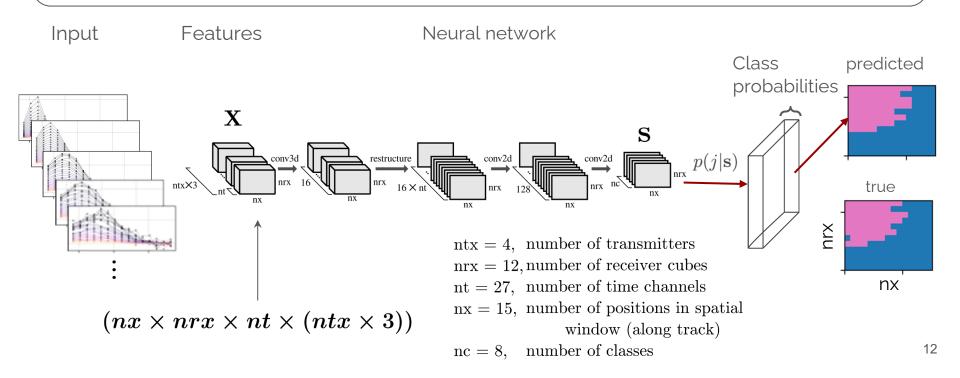
Supervised classification problem

provided data with labels, construct a function (network) that outputs labels given input data

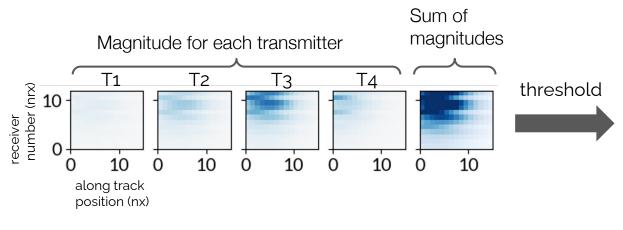


Convolutional Neural Networks (CNNs)

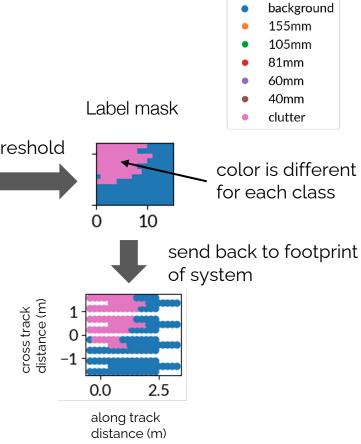
How do we translate these things to the UXO classification problem?

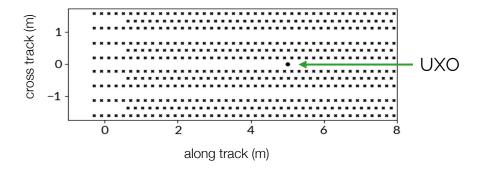


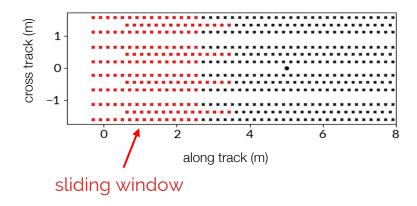
Defining label masks

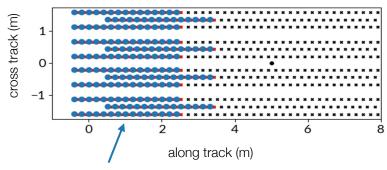


For time channel #5

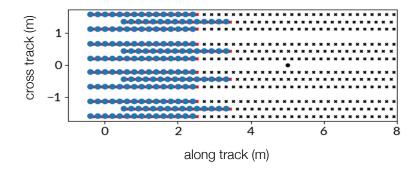




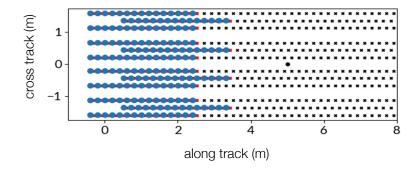




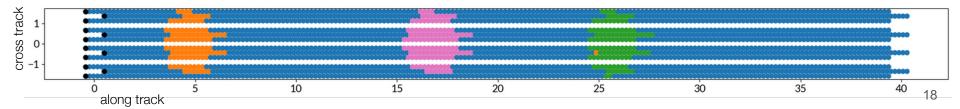
Neural network output (class)



Input features are created by using a sliding window:



Single acquisition line with three objects (classification results)



Training dataset: dipole forward model

7 classes:

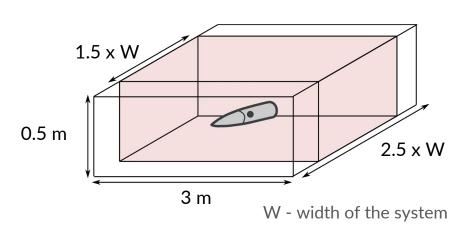
- background
- 155 mm
- 105 mm
- 81 mm
- 60 mm
- 40 mm
- clutter

of realizations:

- Training (multi-class): 400,000
- Validation: 10,000

Randomly assign:

- Target class
- Location (x, y, z)
- Orientation (ϕ, θ, ψ)
- Noise level: approximate from background areas in the field data



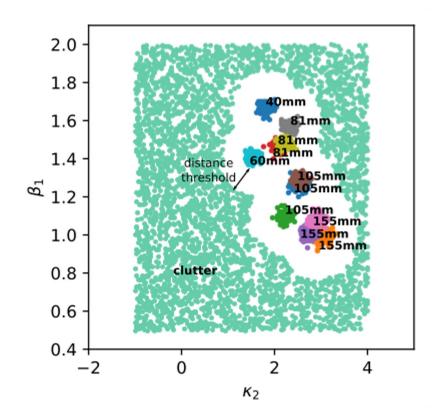
Clutter design

Physics-based parameterization of EM decay:

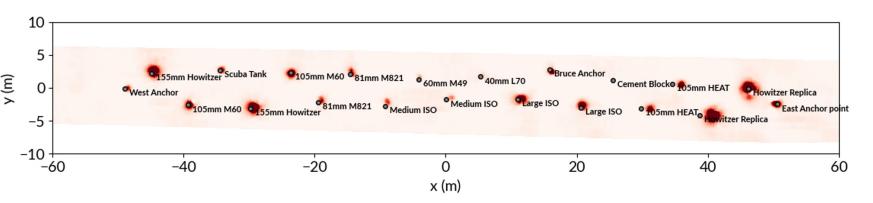
$$L(t) = kt^{-\beta}exp(-t/\gamma)$$

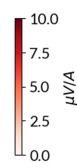
9 parameters in total:

- Estimate values for UXOs in ordnance library
- 2. Define a distance threshold
- Fill the remaining space with clutter objects



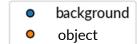
Field data - Sequim Bay test site (2022)

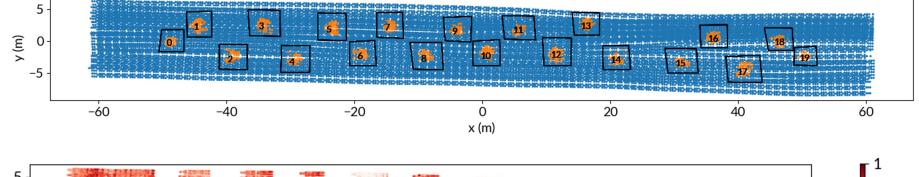


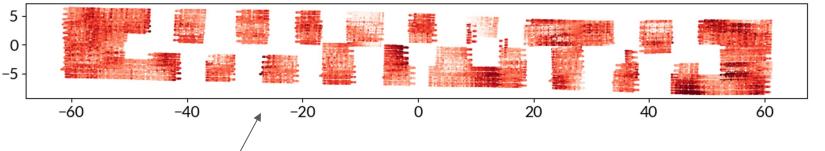


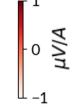
- 7 acquisition lines
- Current workflow requires seawater response removed
- Some ISOs present, we used only UXO objects to train (e.g. medium ISO ~ 81mm)

Get correlated noise using a binary classifier



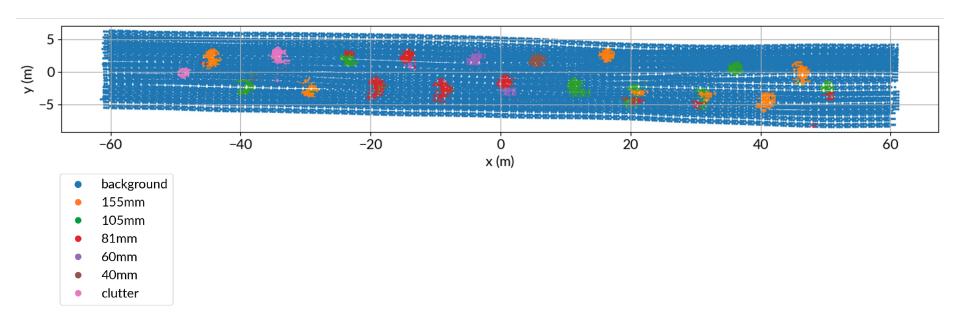


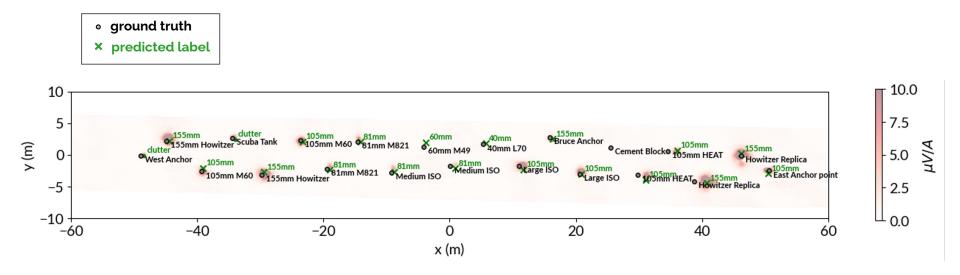


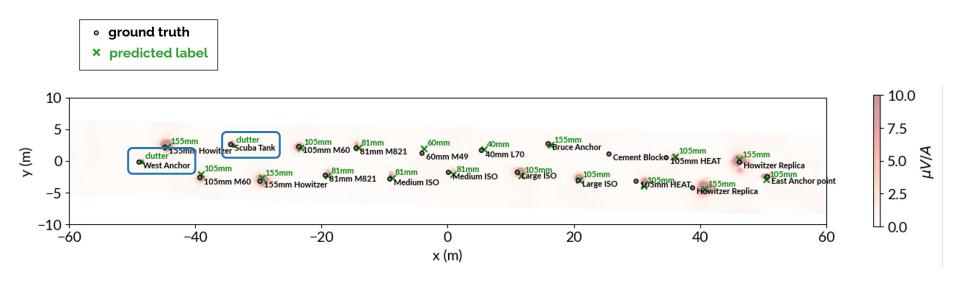


get spatially correlated noise from this subset of field data

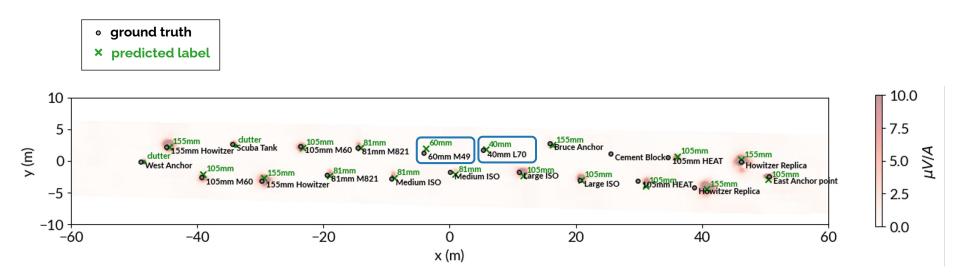
Classification map (output of CNN)



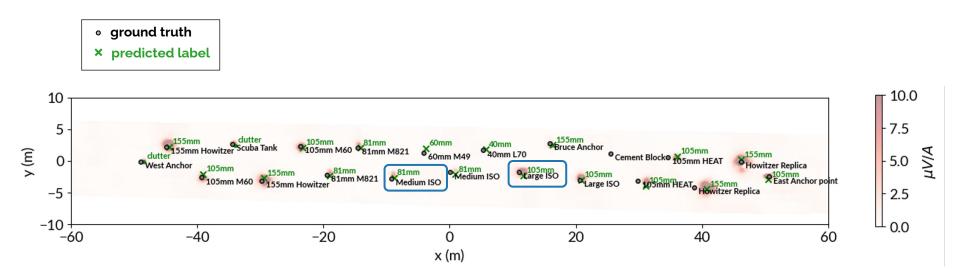




Discriminated clutter



- Discriminated clutter
- Did not miss any UXO



- Discriminated clutter
- Did not miss any UXO
- Classified to closest object in training dataset

Concluding remarks:

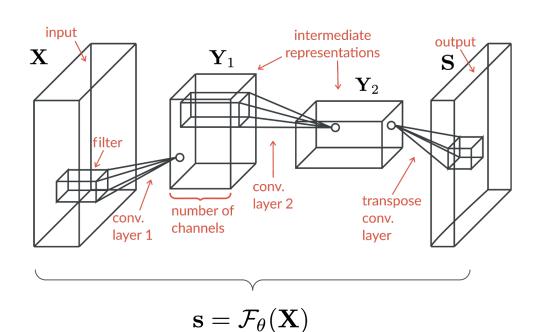
- Key points:
 - image-segmentation architecture
 - clutter design and correlated noise are important
- Some limitations:
 - not trained to handle multiple objects in the same window
 - objects used to generate synthetic data should be close to the objects on the field
- Future work:
 - explore multi-target scenario (maybe instance segmentation)
 - combining with traditional approach

Concluding remarks:

- Key points:
 - image-segmentation architecture
 - clutter design and correlated noise are important
- Some limitations:
 - o not trained to handle multiple objects in the same window
 - objects used to generate synthetic data should be close to the objects on the field
- Future work:
 - explore multi-target scenario (maybe instance segmentation)
 - combining with traditional approach

Backup slides

Convolutional neural networks (CNNs)



Mathematically:

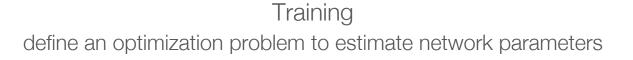
$$\mathbf{Y}_{1} = \sigma(\mathbf{K}_{0}\mathbf{X} + b_{0})$$

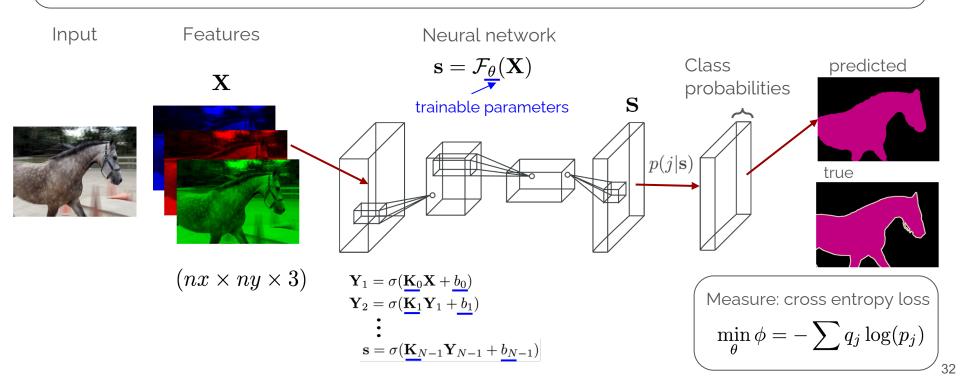
$$\mathbf{Y}_{2} = \sigma(\mathbf{K}_{1}\mathbf{Y}_{1} + b_{1})$$

$$\vdots$$

$$\mathbf{s} = \sigma(\mathbf{K}_{N-1}\mathbf{Y}_{N-1} + b_{N-1})$$

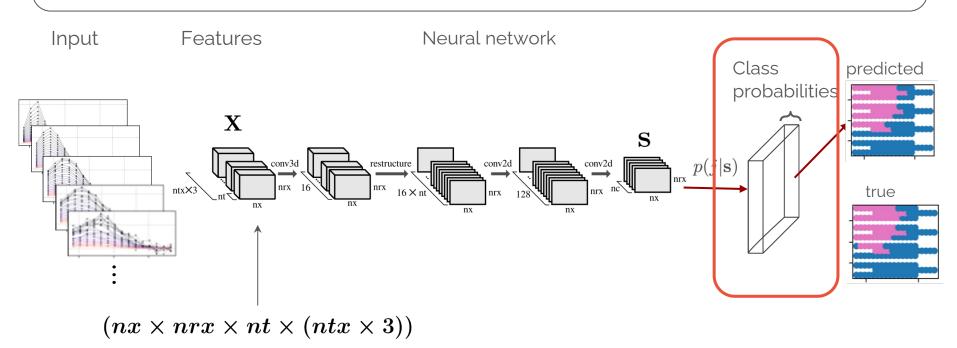
Convolutional Neural Networks (CNNs)





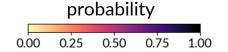
Convolutional Neural Networks

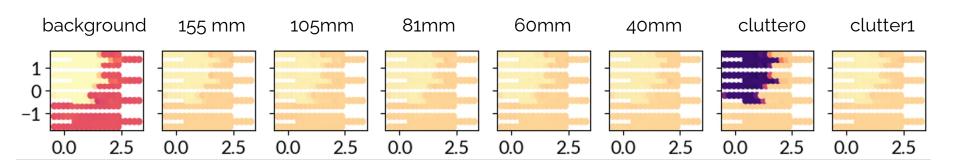
How do we translate these things to the UXO classification problem?

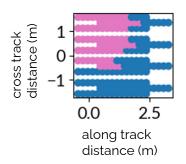


Probability layer and classification

eight different classes:

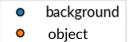


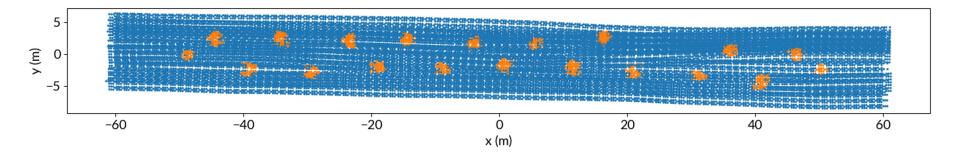




point-wise classification according to max probability

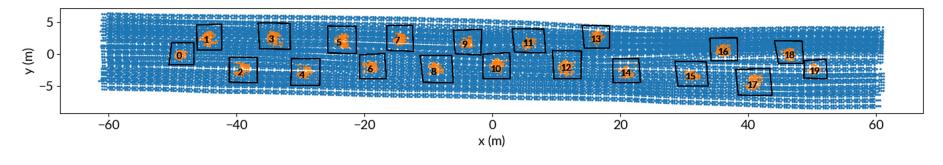
Anomaly detection (binary classifier)

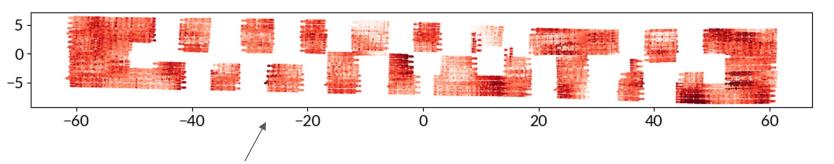


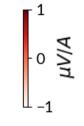


Anomaly detection (binary classifier)

backgroundobject

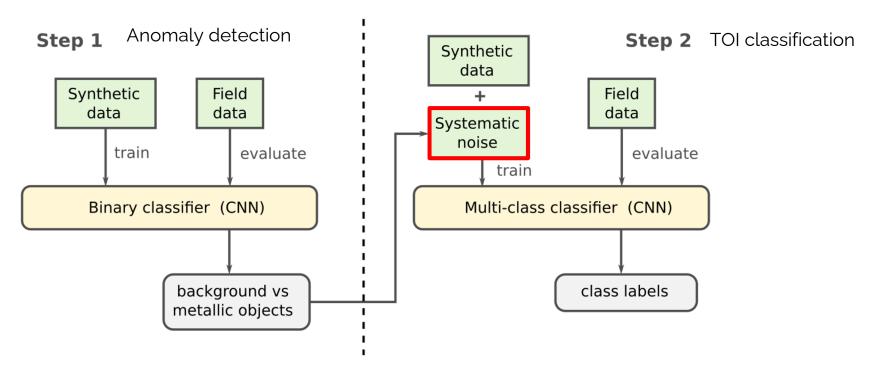






get spatially correlated noise from this subset of field data

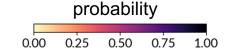
Working with field data: two step workflow

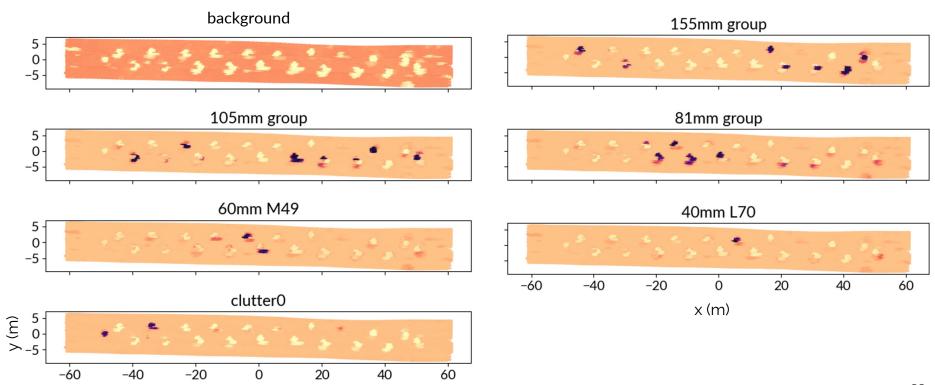


main goal: add realistic noise to the multi-class training dataset

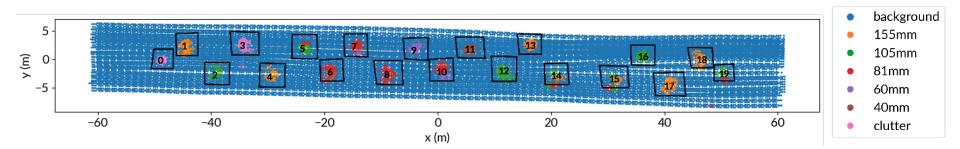
Classification map (probability output)

x(m)

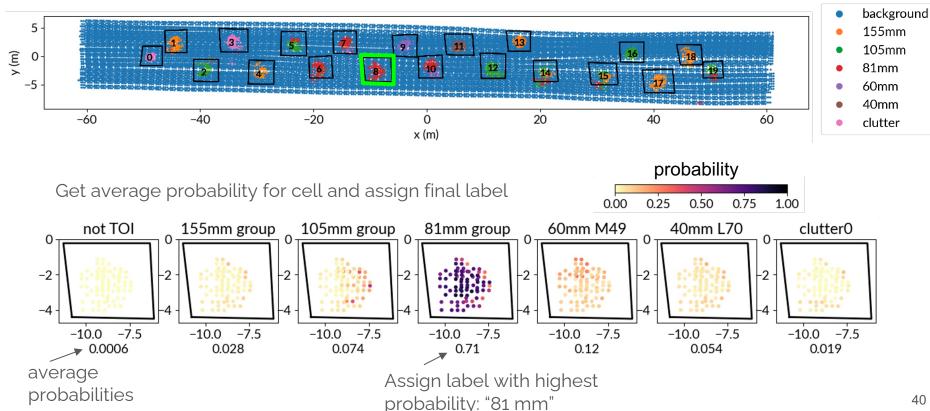




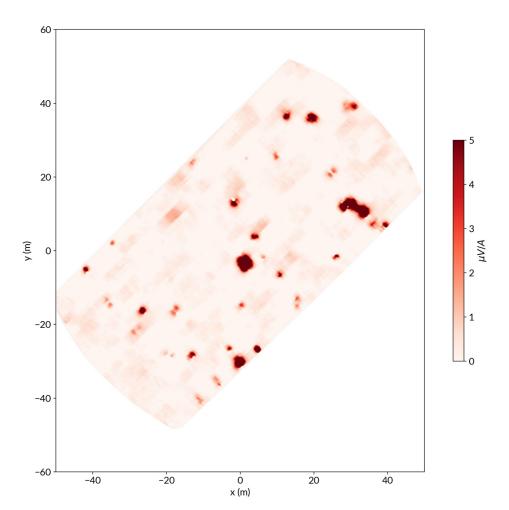
Divide in cells to get a single probability value per cell:



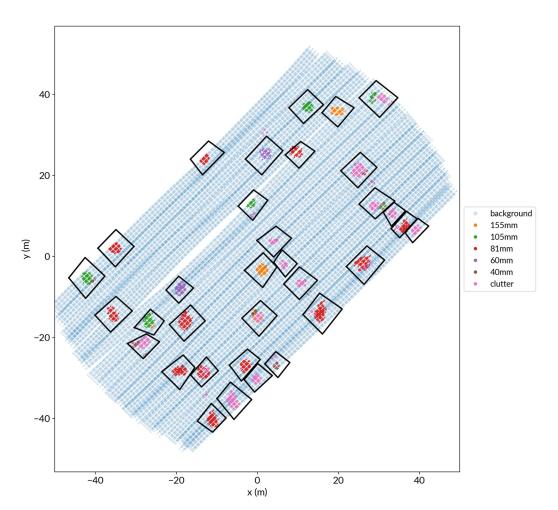
Divide in cells to get a single probability value per cell:



Blindgrid 2021 Sequim Bay



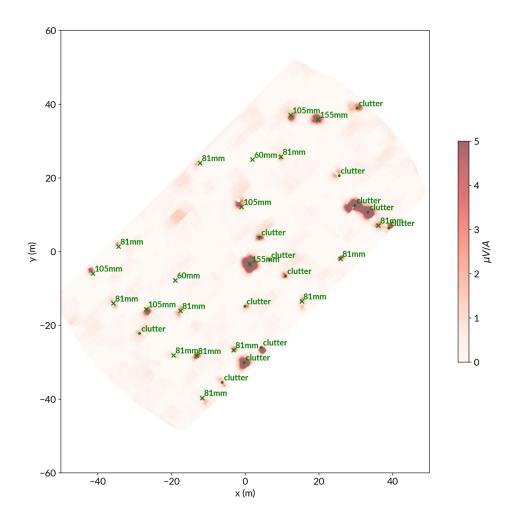
Blindgrid 2021 Sequim Bay



Blindgrid 2021 Sequim Bay

Predicted labels

- Missed only 1 UXO (out of 15)
- 11 out of 16 clutter labeled correctly



Clutter design

L1 and L2

