Comparing strategies for assessing uncertainty with geophysical inversions for mineral exploration
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Motivation /

Drilling plays a crucial role in

Simulation and Inversion

exploration programs, and geophysical o Direct-current resistivity physical property. o background set to the median of the o The amount of regularization is set using a
data often aid in choosing drill locations. calculated apparent resistivity data. beta estimator.
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subsurface conductivity, are commonly
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translating the ultimate decision into a
mathematical framework. Our work is to i N
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Bayesian form: Randomize then optimize J ) E= -
(Bardsley J 2014, Blatter,D 2022) —
P(m\d) o P(d|m)77(m) A _ o The choice of prior norm directly influences the uncertainty.
Perturbed data: E
. . g " © L2 norm uncertainties are near equally uncertain through out the model.Particularly
The marginal and prior are: ~ here the simulation b it
d ~ j\/’(d, \ /Wd) where the simulation has no sensitivity.
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