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SUMMARY

Electromagnetic methods are widely used for the detection and
classification of unexploded ordnance objects in former war
zones or military training grounds. Typically, targets are clas-
sified using intrinsic parameters that are estimated via inver-
sion of the observed data. In this work, we present an ap-
proach for using convolutional neural networks to classify un-
exploded ordnance directly from time-domain electromagnetic
data. The outputs of the network are probabilities that the sig-
nal in a given spatial window is associated with an ordnance
object, as well as a classification, which is simply the class
with the largest probability. We demonstrate our approach with
a synthetic example and show that the trained neural network
can distinguish between small, medium, and large ordnance
objects, as well as metallic clutter, and background response.
These results illustrate the potential utility of machine learn-
ing for the interpretation of electromagnetic data collected over
sites contaminated with ordnance.

INTRODUCTION AND MOTIVATION

Unexploded ordnance (UXO) are munitions that were armed,
fired and remain unexploded. They are a hazard in countries
that have had active wars or military training grounds. In the
US alone, it is estimated that there are on the order of 10 mil-
lion acres of land at over 1400 sites that are contaminated with
UXO; the associated clean-up costs are in the 10s of billions
(Etter and Delaney, 2003). Improving classification to better
identify items which must be dug up, and distinguish them
from clutter, which may safely be left in the ground, can sig-
nificantly reduce these costs.

UXO items have a significant magnetic permeability and are
electrically conductive, so they may be detected with mag-
netic or electromagnetic techniques. For the classification step,
we require data that have sufficient information-content to al-
low us to extract features or estimate parameters that can be
used to distinguish between ordnance items and clutter. Multi-
component time-domain electromagnetic (TDEM) systems have
proven to be well-suited for this task (cf. Bell et al. (2001); Pa-
sion and Oldenburg (2001); Zhang et al. (2003); Billings et al.
(2010)).

To interpret the TDEM data and associate an observed signal
with an ordnance item, a common approach is to conduct a
series of inversions to estimate the location, orientation, and
electromagnetic properties of the target and then match these
properties to a library of known ordnance objects Andrews and
Nelson (2011); Beran et al. (2013). These parametric inver-
sions are non-linear and prone to getting stuck in local minima.
Given the success of neural networks for classification tasks,
not only for images, but also for scientific data, the question

we pose is: can we construct a neural network to classify ord-
nance objects directly from TDEM data without performing
an inversion? Specifically of interest is to obtain the probabil-
ity that an observed signal is associated with a given ordnance
object.

MODELLING THE ELECTROMAGNETIC RESPONSE
OF A UXO

Figure 1 demonstrates the setup of a time-domain electromag-
netic experiment to detect and classify an ordnance object. A
transmitter generates a time-varying magnetic field hT which
induces eddy currents in the conductive, permeable ordnance
object. These eddy currents produce a secondary magnetic
field hR. At the receiver location, we measure the time-rate-of-
change of the secondary magnetic flux (∂bR/∂ t = µ0∂hR/∂ t).

Figure 1: Electromagnetic experiment to detect a UXO. The
transmitter produces a primary magnetic field which excites
currents in a conductive UXO producing a secondary magnetic
field which is measured at the receiver.

To simulate the electromagnetic response of an unexploded
ordnance object, we use an approximate forward model, namely
that due to the response of a transient magnetic dipole

∂bR

∂ t
(r, t) =

1
r3 (3r̂(r̂ ·m(t)−m(t)) (1)

where r = rr̂ = rR− rO is the separation between the receiver
and the ordnance object (Bell et al., 2001; Pasion and Olden-
burg, 2001; Zhang et al., 2003). The moment, m(t), is given
by

m(t) = P(t) ·hT (rO− rT , t) (2)
Bell et al. (2001). It depends upon the strength of the primary
magnetic field at the location of the ordnance object as well as
the properties of the object, which are captured in the polariz-
ability tensor

P(t) = E(φ ,θ ,ψ) ·L(t) ·E>(φ ,θ ,ψ) (3)

The matrix E is an orthogonal matrix which rotates the coordi-
nate system from the geographic coordinates (x,y,z in Figure
1) to the local, body-centered coordinate system of the ord-
nance object (x′,y′,z′ in Figure 1). The polarization matrix
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Machine learning for the classification of UXO

L(t) is a diagonal matrix whose entries are the principal polar-
izabilities of the ordnance object (in the x′,y′,z′ coordinates):

L(t) =

 L1(t)
L2(t)

L3(t)

 (4)

These polarizabilities depend upon the physical properties of
the ordnance object as well as its geometry. For forward mod-
elling, we use the BTInvert Python code, provided by Black
Tusk Geophysics.

SURVEY AND DATA

We consider an UltraTEM towed array, with the geometry shown
in figure 2 (Billings et al., 2018). The system consists of 5
transmitters and 11 receivers which each measure 3 compo-
nents of ∂b/∂ t at 27 time channels between 0.15 ms and 2.5
ms. A sounding collected at a single location of the towed
array then consists of 165 time-series EM data (5×11×3).

Figure 2: (a) Geometry of the UltraTEM system. Colors in-
dicate transmitters and the grey cubes are the three-component
∂b/∂ t receivers. (b) A sample of simulated data (one transmit-
ter and one 3-component receiver) over a Medium ISO. The
color of the lines indicates the time-channel.

A typical approach for working with these data would be to
identify regions with anomalous signal, select a subset of data
containing the anomaly, and then perform parametric inver-
sions to estimate the location, orientation, and principal po-
larizabilities of an object. These polarizabilities are used in
the classification step where they are matched with a library of
known ordnance polarizabilities.

MACHINE LEARNING APPROACH

Rather than going through an inversion process and then clas-
sifying objects, our aim is to build a neural network that, given
UltraTEM data, classifies the signal as being associated with
an ordnance type, clutter, or background.

Convolutional Neural Networks (CNNs) are widely used in ap-
plications for images, audio, and video data (e.g. Krizhevsky
et al. (2012); LeCun and Bengio (1995); LeCun et al. (2010)).
Convolutional filters exploit spatial and temporal relationships
to learn from the data. CNNs are increasingly being adopted
for working with geophysical data. For example they have
been applied for seismic horizon tracking (Peters and Haber,
2020) and mineral prospectivity mapping (Granek, 2016), among
others.

In an image classification problem with color images, the in-
put data would typically include 3 channels of input (red, green

and blue), with each channel having an associated nx×ny im-
age. Analogously, for the UltraTEM data, we have 165 input
channels (one for each transmitter-receiver pair), and the size
of the “image” is the number of along-line data points by num-
ber of time-channels (27). Figure 2(b), shows a sample of 3 of
the 165 TDEM profiles over a Medium ISO; these are the data
that are input to the network. In the following work, we work
with 15 along-line data points, which corresponds to a ∼ 3m
window. The spacing between measurement points is typical
of UltraTEM field data.

The neural network we use consists of 2 convolution layers,
followed by a dense layer for classification (also referred to as
a fully connected layer). Each of the convolutional layers uses
3 convolutional kernels, batch normalization, a ReLU activa-
tion and a max pooling operation. There are 165 input chan-
nels, the first convolutional layer outputs 33 channels and the
second layer outputs 11. In total, the network has ∼75,000
trainable parameters. We denote a forward pass of the network
as

s = Fw(x) (5)

where x is a tensor containing the input features, w are the
trainable weights, and s are the outputs of the network which
has k entries where k is the number of classes. The probability
that the feature-set x is associated with class j is computed via
the softmax function (cf. Hastie et al. (2009))

p( j|s) = es j∑
k esk

(6)

The predicted class is then simply the entry with the largest
probability

ypred = argmax
j

p( j|s) (7)

The training problem is an optimization problem in the net-
work weights. The loss function we adopt is the cross entropy
loss, which is a standard choice for classification problems,
giving,

min
w

φ =−
∑

k

qk log(pk) (8)

as the statement of the training problem. The label is en-
coded in qk ∈ 0,1 which takes the value 0 for all entries except
the one corresponding to the true class label (referred to as
one-hot encoding). Our implementation uses Pytorch (Paszke
et al., 2019), and can be accessed at https://github.com/simpeg-
research/heagy-et-al-2020-uxo-seg.

To construct the input features x, we perform two normaliza-
tion steps on the data, which are illustrated in Figure 3. In the
first, we scale the data as a function of time-channel and mul-
tiply the data at each time by its time-channel (Figure 3b). The
purpose of this step is to amplify the influence of late-time
channels in the network while still preserving characteristics
of the decay, which are indicative of the principal polarizabil-
ities. In the second step, we scale all 165 inputs by the max-
imum amplitude across all data so that all inputs are in the
range [−1,1] (Figure 3c) . The aim of this step is to force the
network to learn spatial and temporal relationships within the
data rather than simply the mean amplitude of signal associ-
ated with a given ordnance object, which is influenced both by
the ordnance type and by the depth of burial.
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Machine learning for the classification of UXO

Figure 3: Subset of (a) simulated data, (b) data that have been
multiplied by t, the time-channel (step 1 in the normalizations),
(c) data from (b) which have been normalized by the maximum
amplitude across all 165 inputs.

class [0, 4]
x-location (m) [-1.75, 1.75]
y-location (m) [-0.5, 3.5]
depth (m) [0, 0.5]
yaw [0, 2π]
pitch [0, 2π]
mean noise amplitude (log sampled) [10−5,10−2]

Table 1: Range of variable assigned in the training, test, and
validation sets.

Training

We consider 5 classes: background, Small ISO, Medium ISO,
Large ISO, and clutter. For each realization we randomly as-
sign the class, noise level, and location and orientation of the
target object. The range of parameters is shown in table 1. The
training set we generate consists of 8192 simulations and the
test and validation sets each consist of 1024 realizations. For
our noise model, we generate gaussian random noise of the
form

ε = a
1
t
N (0,1) (9)

where a is the amplitude / variance (in the range specified in
Table 1), t is time (ms) and N (0,1) is the standard normal
distribution. The functional form of the noise model mimics
the ∼ 1/t decay expected at intermediate times over a conduc-
tive, permeable target (Pasion, 1999) and is consistent with the
noise observed at the test plot. Polarizabilities for each ord-
nance type are specified by the Department of Defence database
(Murray et al., 2016). To simulate clutter, we include both:
(a) ordnance objects that are not expected at a given site, here
we include the polarizabilities for a 20mm munition, and (b)
spherical objects, which have L1 = L2 = L3; for the follow-
ing work, we use the polarizabilities associated with a Small
ISO. How to design a “clutter” class that includes sufficiently
diverse signals that are not associated with targets of interest is
an avenue for future development.

We train the network for 10 epochs using stochastic gradient
descent and mini-batches of size 32. The training, test, and val-
idation accuracy are 98.7%, 97.6%, and 98.2%, respectively.

To demonstrate the use of the trained classifier for interpreting
signal, we consider a single profile of data collected over 3 ob-

jects, a Small ISO (5m,−0.4m), a clutter item (17m,−0.2m),
and a Medium ISO (26m,−0.7m). The along-line location of
each item is indicated by the squares in Figure 4a (the vertical
location of the squares has no meaning). All items are centered
in the cross-line direction (x = 0). To interpret the signal, we
consider a moving 3m window and perform a classification for
each window of data. This can be thought of as a coarse-scale
segmentation problem in machine learning. The classifications
are denoted by the circles in Figure 4a; each circle is the clas-
sification of data in a 3m window centered at the location of
the dot. To simplify the image, we do not plot classifications
of “background” in Figure 4a. Figure 4b shows the associated
class probabilities, computed using equation 6.

Near the along-line center of each target, our classifications
are correct and the associated probabilities near 1. Of note is
that the training set only included simulations of ordnance ob-
jects up to 0.5m depth; the Medium ISO in this example is
deeper (0.7m) and the classifications near that object are cor-
rect. There are misclassifications and lower probabilities near
the edge of the anomalous signals. Our training set only con-
tained some simulations where the item of interest was out-
side the along-line window of signal we are considering, but
only to a maximum of ±0.5m. The misclassifications are in
regions where there is still coherent signal, but the network
has not seen training data with objects that are further than
0.5m from the window of interest. How best to treat these
“edge effects” requires further investigation. We could expand
the variability of the training set to include items further away;
this would then increase the footprint of the classification. An-
other alternative is to include simulations of distant objects in
the background-class, or perhaps we will require some combi-
nation of these approaches.

Figure 4: (a) Simulated UltraTEM data collected along a pro-
file line (black) with 3 items whose along-line location is indi-
cated by the squares. The number indicated beneath each item
indicates its depth. The colored circles denote the classifica-
tion obtained from the trained neural network for signal within
a 3m window that is centered at the along-line location of the
circle. (b) Probabilities associated with each class.
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Machine learning for the classification of UXO

SYNTHETIC EXAMPLE
We now consider how this approach could be used to produce
maps indicating the probability of a given ordnance item at a
field site. We construct a synthetic example based on the data
collected at a test plot in Australia. Figure 5 shows the survey
lines (grey) and the location and depth of ordnance items and
clutter. These locations and depths were drawn for a subset
of the items seeded at the test plot. As was done in the previ-

Figure 5: Survey geometry based on the data collected at a
test plot in Australia. Ordnance locations are selected from a
subset of those seeded at the test plot. The values to the right
of the markers indicate the depth of each object.

ous section, we use a sliding 3m window and use the trained
network to provide probabilities associated with each of the
classes. These probabilities are gridded using the block reduce
and spline operations included in verde (Uieda, 2018). A map
of the probabilities for each item are shown in Figure 6. Over-
all, there is good agreement between where significant proba-
bilities are assigned and the true spatial location of each target
object. In Figure 6b, there is a false-positive near (-15m, 5m)
easting. We attribute this to “edge effects”, as we observed in
the previous section, due to the Large ISO. Similarly, we see
halo-effects in Figure 6d where moderate probabilities are as-
signed to the clutter class in the vicinity of ordnance objects.

DISCUSSION AND CONCLUSIONS
The problem of classifying unexploded ordnance from electro-
magnetic data has several characteristics that make it a good
candidate for the use of CNNs: we are able to construct syn-
thetic labeled training sets from a library of known ordnance
objects, there are labeled field data sets, and the data acquired
from a given EM system (e.g. the UltraTEM) have a spatio-
temporal structure that is well suited for the classification strengths
of CNNs. The synthetic results we have shown demonstrate
the potential for neural networks to be a useful interpretation
tool to augment inversion-based approaches. The method we
present could be used to prioritize areas where a cued sensor
may be deployed to collect longer off-time data, or to provide
an independent interpretation to complement an inversion re-
sult.

This work is in early stages, and there are open questions with
respect to constructing robust noise and clutter models, han-
dling multi-object scenarios where two or more ordnance items
are in close proximity, as well as addressing challenging ge-
ologic scenarios such as settings with magnetic soils which

Figure 6: Maps of the probability of each target class: (a)
Small ISO, (b) Medium ISO, (c) Large ISO, (d) Clutter.

complicate the EM response. Additionally, we plan to further
investigate strategies for designing the network architecture,
input features, and the loss function (e.g. incorporating the
asymmetry between the consequences of false positives and
false negatives). The CNN architecture we presented is spe-
cific to the geometry of the UltraTEM system, however, we
anticipate that this approach could be readily adapted to other
multi-component EM systems.
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