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S U M M A R Y
The work in this paper is motivated by the increasing use of electrical and electromagnetic
methods in geoscience problems where steel-cased wells are present. Applications of interest
include monitoring carbon capture and storage and hydraulic fracturing operations. Also
of interest is detecting flaws or breaks in degrading steel-casings—such wells pose serious
environmental hazards. The general principles of electrical methods with steel-cased wells
are understood and several authors have demonstrated that the presence of steel-cased wells
can be beneficial for detecting signal due to targets at depth. However, the success of a direct
current (DC) resistivity survey lies in the details. Secondary signals might only be a few per
cent of the primary signal. In designing a survey, the geometry of the source and receivers,
and whether the source is at the top of the casing, inside of it, or beneath the casing will impact
measured responses. Also the physical properties and geometry of the background geology,
target and casing will have a large impact on the measured data. Because of the small values
of the diagnostic signals, it is important to understand the detailed physics of the problem
and also to be able to carry out accurate simulations. This latter task is computationally
challenging because of the extreme geometry of the wells, which extend kilometers in depth
but have millimeter variations in the radial direction, and the extreme variation in the electrical
conductivity which is typically 5–7 orders of magnitude larger than that of the background
geology.

In this paper, we adopt a cylindrical discretization for numerical simulations to investigate
three important aspects of DC resistivity in settings with steel-cased wells. (1) We examine the
feasibility of using a surface-based DC resistivity survey for diagnosing impairments along
a well in a casing integrity experiment. This parameter study demonstrates the impact of
the background conductivity, the conductivity of the casing, the depth of the flaw, and the
proportion of the casing circumference that is compromised on amplitude of the secondary
electric fields measured at the surface. (2) Next, we consider elements of survey design for
exciting a conductive or resistive target at depth. We show that conductive targets generate
stronger secondary responses than resistive targets, and that having an electrical connection
between the target and well can significantly increase the measured secondary responses. (3)
Finally, we examine common strategies for approximating the fine-scale structure of a steel
cased well with a coarse-scale representation to reduce computational load. We show that for
DC resistivity experiments, the product of the conductivity and the cross-sectional area of the
casing is the important quantity for controlling the distribution of currents and charges along
its length.

To promote insight into the physics, we present results by plotting the currents, charges, and
electric fields in each of the scenarios examined. All of the examples shown in this paper are
built on open-source software and are available as Jupyter notebooks.

Key words: Electrical properties; Electrical resistivity tomography (ERT); Electromagnetic
theory; Downhole methods; Numerical modelling.
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1 I N T RO D U C T I O N

Subsurface resistivity can be a valuable part of a geological interpre-
tation, whether that be identifying lithologic units, characterizing
changes within a reservoir or imaging subsurface injections asso-
ciated with carbon capture and storage or hydraulic fracturing. In
many of these settings, steel-cased wellbores are present. Steel has
a significant electrical conductivity, which is generally six or more
orders of magnitude larger that of the surrounding of the geological
formation. Clearly, such a large contrast is important to consider
when conducting a direct current (DC) resistivity survey. On one-
hand, the role of the steel casing may be viewed as ‘distortion’
which complicates the signals of interest (Wait 1983; Holladay &
West 1984; Johnston et al. 1987). In other scenarios, a wellbore may
be beneficial in that it can serve as an ‘extended electrode’ so that
current-injection and sampling of the resultant electrical potentials
can take place beneath near surface heterogeneities (Ramirez et al.
1996; Rucker et al. 2010; Rucker 2012; Ronczka et al. 2015) or
so that currents injected at the surface can reach significant depths
(Schenkel & Morrison 1994; Weiss et al. 2016; Hoversten et al.
2017). The use of casings as extended electrodes goes back sev-
eral decades. Sill & Ward (1978) used the well casing as a buried
electrode for their mise-à-la-masse experiment at the Roosevelt Hot
Springs geothermal field in Utah, as did Kauahikaua et al. (1980)
for their mise-à-la-masse mapping of a high temperature geothermal
reservoir in Hawaii. Sill (1983) used the well as a source to monitor
an injection test at Raft River, Idaho to determine if measurable
changes that might indicate the direction of fluid flow could be
observed. Rocroi & Koulikov (1985) delineated a known resistive
hydrocarbon deposit in the USSR by injecting current into two cased
wells. More recently, applications for hydraulic fracturing, enhanced
oil recovery and carbon capture and storage have been of much in-
terest (Commer et al. 2015; Tietze et al. 2015; Um et al. 2015; Weiss
et al. 2016; Hoversten et al. 2017). There is also interest in exam-
ining the use of electrical or electromagnetic methods deployed on
the surface to non-invasively look for flaws or breaks in the casing.
Wilt et al. (2018b) introduces the idea of using electrical or elec-
tromagnetic methods for casing integrity which is further expanded
upon in Wilt et al. (2018a). They show that low-frequency elec-
tromagnetic methods are sensitive to variations in wellbore length
and demonstrate that their numerical simulations agree with field
data collected over two different wellbores at the Containment and
Monitoring Institute (CaMI) field site in southern Alberta, Canada.
This work provides motivation for further delving into the physics
and assessing under which circumstances we can expect to de-
tect a flaw along a wellbore using electrical or electromagnetic
methods.

To build a physical understanding of electrical and electromag-
netic methods in settings where steel-cased wells are present, there
are several areas to be investigated. First, the significant conductiv-
ity of the steel will impact the behaviour of the charges, currents,
and electric fields. This is true at the electrostatic limit, relevant
to DC resistivity surveys, as well as when the source fields are
time-varying, as in electromagnetic (EM) surveys. When consid-
ering EM surveys, induction effects also influence the responses,
and magnetic fields and fluxes become relevant, meaning that the
magnetic permeability of the steel then introduces further complex-
ity into the signals we measure. This paper is concerned with the
first set of physical phenomena: understanding the physics of steel
casings at DC.

Much of the initial theory and understanding of the behaviour
of electric fields, currents and charges, was developed in the con-
text of well-logging. Kaufman (1990) and Kaufman & Wightman
(1993) provide a theoretical basis for our understanding; the first
paper derives an analytical solution for a DC experiment where an
electrode is positioned along the axis of an infinite length well, and
discusses where charges accumulate and how currents leak into the
surrounding formation. From this, Kaufman (1990) shows that by
measuring the second derivative of the electric potential, informa-
tion about the formation resistivity can be obtained. The second
paper extends the analysis for finite length wells. Schenkel (1991)
and Schenkel & Morrison (1990, 1994) pioneered numerical work
analyzing the influence of steel-cased wells on geophysical data
using an integral equation approach for solving the DC resistivity
problem. They expand upon the logging-through-casing application
and discuss limitations of the transmission line solution presented
in Kaufman (1990) for this application. They also explored the fea-
sibility of cross-hole and borehole-to-surface surveys where one
electrode is placed within, or beneath, a cased borehole. These ex-
amples demonstrated that the casing can improve detectability of a
conductive target as compared to the scenario where no cased well
is present.

With improvements in computing power, it has become possible
to perform 3-D numerical simulations with steel-cased wells. Sim-
ulations which capture the challenging geometry and large physical
property contrasts due to well casings have have been successfully
used for DC and EM problems (e.g. Swidinsky et al. 2013; Com-
mer et al. 2015; Hoversten et al. 2015; Tang et al. 2015; Um et al.
2015; Weiss et al. 2016; Yang et al. 2016; Heagy & Oldenburg
2019). These advances provide the opportunity to delve further into
aspects of the physics governing the behaviour of fields, fluxes, and
charges when casings are present in an electrical or electromagnetic
survey. To develop our understanding we start with DC resistivity.

In this paper, we focus our attention on three aspects of DC resis-
tivity in the presence of steel-cased well. Following an overview of
the governing equations and numerical discretization in Section 2,
we examine the feasibility of conducting a surface DC survey to
detect a flaw in the casing and discuss factors that influence de-
tectability of a flaw in Section 3. In Section 4, we examine the use
of DC resistivity for geophysical imaging when a steel-cased well
is present. Finally, in Section 5, we assess strategies applied in the
literature for approximating a steel-cased well with a coarse-scale
model to reduce computational cost. We focus our efforts on ex-
amining the finer details of the physics and hence we will consider
only models with a single well in our simulations. We refer readers
to Weiss (2017) for discussion of DC resistivity simulations with
multiple wells.

Source codes for all of the simulations shown are open source,
licensed under the MIT license, and are available as Jupyter note-
books at: https://github.com/simpeg-research/heagy-2018-dc-cas
ing (Heagy 2018). The examples in the paper have been selected
with an emphasis on examining physical principles; however, we
envision that the Jupyter notebooks included with this publication
could serve as useful survey design tools.

2 G OV E R N I N G E Q UAT I O N S A N D
N U M E R I C A L M O D E L L I N G

The governing equations for the DC resistivity problem are:

∇ · �j = I (δ(�r − �rs+ ) − δ(�r − �rs− ))

�e = −∇φ
, (1)
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where �j is the current density, I is the magnitude of the source
current, and �rs+ and �rs− are the locations of the positive and negative
source electrodes, respectively. In the electrostatic limit, which is
applicable for the DC experiment, the electric field �e is curl-free
and can therefore be expressed as the gradient of a scalar potential
φ, giving the second equation listed in eq. (1). The electric field and
the current density are related through Ohm’s law:

�j = σ �e (2)

which we invoke to reduce the two first-order partial differential
equations in eq. (1) to a single, second order equation in φ:

∇ · σ∇φ = −I (δ(�r − �rs+ ) − δ(�r − �rs− )) . (3)

In addition to considering the current density and electric fields, we
will also present results in terms of charges. The charge density is
related to the electric field through

∇ · �e = ρ f

ε0
(4)

To numerically solve eq. (3), we use a finite volume approach,
with the electric potential and the electrical conductivity discretized
at cell centers. From the discrete solution for the electric potentials,
the discrete electric field, current density and charge density can
be computed directly. The vector quantities (electric field and cur-
rent density) are computed on cell faces while the charge density
is computed at cell centers. We use both cylindrically symmetric
and 3-D cylindrical meshes, which include an azimuthal discretiza-
tion. Fig. 1 demonstrates the discretization on: (a) a cylindrically
symmetric mesh and (b) a 3-D cylindrical mesh.

All of the numerical simulations are run with the open source
software described in Heagy & Oldenburg (2019), which relies on
the electromagnetics module within SimPEG (Cockett et al. 2015;
Heagy et al. 2017). In Heagy & Oldenburg (2019), we demonstrate
validation of the code by comparing a time-domain EM simulation,
which uses the same DC resistivity forward simulation code as
used in this paper to compute the initial condition, with solutions
presented in Commer et al. (2015) as well as with the Finite Volume
OcTree code described in Haber et al. (2007).

3 D C R E S I S T I V I T Y F O R C A S I N G
I N T E G R I T Y

Degraded or impaired wells can pose environmental and public-
health hazards. A flaw in the cement or casing can provide a conduit
for methane to migrate from depth into groundwater aquifers or into
the atmosphere. This is particularly of concern for shale gas wells.
Elevated levels of thermogenic methane, which are attributed to
deep sources (rather than biogenic methane which can be generated
closer to the surface), in groundwater wells in Pennsylvania has
been positively correlated with proximity to shale gas wells in the
Marcellus and Utica (Osborn et al. 2011; Jackson et al. 2013),
and failure rates of unconventional wells (e.g. shale gas wells) are
estimated to be 1.57 times larger than those of conventional wells
drilled in the same time-period (Ingraffea et al. 2014). Wells can fail
if there is a compromise in the cement or the casing. To diagnose
the integrity of a well with electrical methods, we require a contrast
in electrical conductivity to be associated with the flaw, thus we
will focus our attention to detecting flaws in the highly conductive
casing.

Under what circumstances should we be able to detect a flaw in
the casing using DC resistivity from the surface? To address this

question, we begin by considering a well in which the entire circum-
ference is compromised along some depth interval. We simulate a
DC resistivity experiment and examine how the charge distribution
along the well, and thus the electric fields measured at the surface,
are impacted by the flaw. From there, we investigate the role of
parameters including the depth of the flaw and the background con-
ductivity on our ability to detect it from the surface. Finally, we
examine the scenario in which only a portion of the circumference
of the pipe is flawed.

3.1 Basic experiment

The experiment we consider is a ‘top-casing’ DC resistivity ex-
periment where one electrode is connected to the wellbore at the
surface and a return electrode is positioned some distance away. The
concept and basic physics is the same as a mise-à-la-masse survey
in which the positive electrode is connected to a conductive target.
When the source is turned on, positive charges are distributed on
the interface between the conductive target and the resistive host.
Electric potentials are measured on the surface and these data are
then used to infer information about the extent of the conductor
(Telford et al. 1990). Applying the same principles to a casing in-
tegrity experiment, we connect a positive electrode to the casing,
and for an intact casing, positive charges will be distributed on the
outer interface of the casing along its entire length. If corrosion
causes a flaw across the diameter of the casing, the continuity of the
conductive flow-path for charges is interrupted. Thus, we expect
a larger charge to reside on the top portion of the flawed casing
than would be observed if the casing were intact. As a result, the
electric field observed at the surface should be larger than if the
casing were intact. The difference in electric field (or electric po-
tentials) from the expected electric field that results from an intact
well could then be an indicator that there is a problem with the
well.

To demonstrate the principles, we consider a simple model of a
casing in a half-space. The intact well is 1 km long, has an outer
diameter of 10 cm, a thickness of 1 cm and a conductivity of 5
× 106 S m–1. The background is 10−1 S m–1, and the conductivity
of the inside of the well is taken to be equal to that of the back-
ground. The positive electrode is connected to the top of the casing
and the return electrode is positioned 2 km away. To simulate the
physics, the 3-D cylindrical DC code described in Heagy & Old-
enburg (2019) is used. In Fig. 2 we show cross-sections of the: (a)
electrical conductivity model, (b) current density, (c) charge den-
sity and (d) electric field. The top row shows the intact well and the
bottom row shows a flawed well which contains a 10 m gap in the
casing at 500 m depth. As expected, the introduction of a resistive
flaw prevents currents from reaching the bottom portion of the well.
This results in increased currents, charge density, and thus electric
fields within the top 500 m.

To quantify the charge along the length of the well, we have
plotted the charge as a function of depth for the intact well (black),
flawed well (blue) and also a ‘short’ well of 500 m length (grey
dash-dot) in Fig. 3(a). In each of the wells, we observe that there is
an increase in charge density near the end of the discontinuity along
the length of the well. This was also noted in Griffiths & Li (1997)
and Heagy & Oldenburg (2019) and is attributed to edge-effects. At
an interface between materials with two different conductivities, the
normal component of the current density must be conserved, as well
as the tangential component of the electric field; the discontinuity at
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4 L.J. Heagy & D.W. Oldenburg

Figure 1. Cylindrical finite volume cells for a cell-centred discretization of the DC resistivity problem: (a) a cylindrically symmetric cell, (b) a 3-D cylindrical
cell. Scalar quantities (φ, σ , ρf) are discretized at cell centres and vector quantities (�j , �e) are computed on cell faces.

Figure 2. Cross section showing: (a) electrical conductivity, (b) current density, (c) charge density and (d) electric field for a top-casing DC resistivity
experiment over (top) an intact 1000 m long well and (bottom) a 1000 m long well with a 10 m flaw at 500 m depth.
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Direct current resistivity with steel-cased wells 5

Figure 3. (a) Charge along the length of the intact well (black), a 500 m well (‘short’, grey dash–dotted), and a well with a 10 m flaw at 500 m depth (blue), in
a top-casing DC resistivity experiment. (b) Secondary electric field due on the surface of the earth due to the flaw in the casing. The primary is defined as the
electric field due to the 1000 m long intact well. The return electrode is 2000 m away from the well.

the end of the pipe, and at the location of the flaw, means the conti-
nuity conditions must be preserved simultaneously in the radial and
vertical directions, and this complicates the behaviour of the fields,
fluxes and charges. Another observation is that the flawed and short
wells have nearly identical charge distributions in the top 500 m. In
the bottom portion of the flawed well, where the remaining conduc-
tive material is, a small dipolar charge is introduced. However, this
charge is nearly an order of magnitude smaller than the charge in the
top portion of the pipe. This behaviour was similarly noted by Wilt
et al. (2018a,b) in their examination of currents along the length of
an intact and a flawed well. The signal due to the flaw can be defined
as the difference between the total response due to a flawed well and
the total response due to an intact well (the primary); we will refer
to this difference as the secondary response. The secondary charge
is dipolar in nature with positive charge above the flaw and negative
charge beneath the flaw. We note that the charge distributions along
the short well, truncated where the flaw starts at 500 m depth, and
along the top portion of the flawed well are almost identical; these
charges are the source of signal for a surface electric field measure-
ment. This suggests that an inversion strategy, where one attempts
to estimate the length of a well, may be an effective approach for
characterizing the depth to a flaw.

3.1.1 Impact of the vertical extent of the flaw

A 10 m flaw is quite long and it is of interest to see how the results are
changed if the flaw has a smaller vertical extent. The distribution
of charges shown in Fig. 3 hints that the flaw may not need to
be very long in order to still significantly influence the response.
To confirm this, we adopt a much finer vertical discretization in
order to model smaller flaws. Here, we use a shorter, 50-m-long
well in order to reduce computational load. The flaw is positioned
at 25 m depth, and the length of the impairment is varied. This
simulation is conducted on a cylindrically symmetric mesh. The
positive electrode is connected to the casing, and a return electrode
is positioned 50m away.

The resultant charge distributions are shown in Fig. 4. For com-
parison, we have again shown the charge on a well that is truncated
at the location of the flaw (grey dash–dotted line). The charge distri-
bution is similar for all of the flawed-well scenarios, even for flaws

Figure 4. Charge along the length of a 50 m long intact well (black), a 25 m
well (‘short’, grey dash–dotted), and four wells, each with a flaw starting at
25 m depth and extending the length indicated by the legend (5 × 10−1 m
(blue), 5 × 10−2 m (orange), and 5 × 10−3 m (green) in a top-casing DC
resistivity experiment. For reference, the diameter of the casing is 10−1 m
and its thickness is 10−2 m. The return electrode is 50 m away from the well
and a cylindrically symmetric mesh was used in the simulation.

smaller than the thickness of the casing (10−2 m). We see similar be-
haviour to that shown in Fig. 3, where positive charge accumulates
within the top portion of the well and a small dipole charge is present
in the bottom portion of the well. There are minor differences in
amplitude as the vertical extent of the flaw is changed. As the extent
of the flaw decreases, the amplitude of the dipolar charge on the
bottom portion of the well increases slightly while the amplitude of
the positive charge on the top portion of the well decreases. These
distinctions, however, are small in magnitude, and even if the back-
ground is more conductive, the casing is still orders-of-magnitude
larger in conductivity than any geological material we are likely to
encounter. Thus, we can conclude that, so long as the impairment
affects the entire circumference of the casing, the extent of that flaw
has little impact on the charge that accumulates in the top portion
of the well. As such, we will proceed in our analysis using a 10 m
flaw in the 1 km well so that a fine vertical discretization is not
necessary.
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6 L.J. Heagy & D.W. Oldenburg

3.2 Survey design considerations

When examining detectability of a signal, there are two aspects to
consider: (1) the signal must be larger than the noise floor of the
instrument and (2) the signal must be a significant percentage of
the primary; for the casing integrity experiment, the primary is the
signal due to the intact well. Due to the cylindrical symmetry of the
charge on the well, we expect the electric field at the surface to be
purely radial, thus only radial electric field data need be collected
at the surface.

In Fig. 5, we have plotted the primary field (top row), secondary
field (second row) and secondary field as a percentage of the primary
(third row) for four different return electrode locations. In (a), the
return electrode is 2000 m offset from the well, in (b) the offset is
750 m, in (c) the offset is 500 m, and in (d) the offset is 250 m.
In addition to the plan view images, we have plotted the primary
electric field (black), total electric field for the flawed well (blue) and
secondary radial electric field (orange) along the θ = 90

◦
azimuth

in the fourth row of Fig. 5. The fifth row shows the secondary radial
electric field as a percentage of the primary radial electric field.

At the furthest offset (Fig. 5a), there is nearly complete cylindrical
symmetry in the primary field. With complete cylindrical symmetry
there is no preferential direction along which to collect data. As we
move the return electrode closer, for example to 750 m from the
well, we notice that the secondary electric field does not change
substantially. However, if we examine the ratio of the secondary
field to the primary radial electric field (second and fifth rows),
we see that the ratio has increased. Although the primary field has
similar, if not larger, amplitude near the well, it also has considerable
curvature. As a result, the proportion of the primary field that is in
the radial direction has decreased in amplitude. Hence the important
characteristic, the ratio of the secondary radial electric field to the
primary radial electric field, has increased. The above principles are
further enhanced as the return current is brought closer to the well as
in panels (c) and (d), where the return electrode is brought to 500 and
250 m from the well. Again, for all of these examples the amplitude
of the secondary field at the surface is quite similar. However, the
choice of azimuth for the survey line will greatly affect the size of
the ratio. In terms of survey design, we can take advantage of the
return electrode to reduce coupling with the primary.

For the examples that follow, we will place the return electrode
at 500 m from the well and collect radial data along a line that is
perpendicular to the source-line. We will examine several factors
influencing detectability of a flaw, including the depth of the flaw
and the conductivity of the background in the following sections.
We will also examine the scenario where only a portion of the
circumference of the well has been compromised.

3.3 Factors influencing detectability

3.3.1 Depth of the flaw

The introduction of a flaw in the well changes the distribution of
charges along the length of the well and causes a secondary dipolar
charge centered about the flaw. The position and strength of this
dipole will affect our ability to detect the flaw. To examine this, we
again use a model of a 1 km pipe in a 10−1 S m–1 background. The
positive electrode is connected to the top of the well and a return
electrode is 500 m away from the well. We vary the depth of a 10 m
flaw from 300 m to 900 m. In Fig. 6, we have plotted radial electric
field results along a line perpendicular to the source electrodes. In
(a), we show total radial electric field, in (b) the secondary radial

electric field (with the primary being the electric field resulting from
the intact well, shown in black in panel a) and in (c) we show the
secondary radial electric field as a percentage of the primary. We
have indicated where values fall below a 10−7 V m–1 noise floor
on Figs 6(a) and (b), as well as those that fall below a 20 per cent
threshold in (c). A threshold of 20 per cent may be conservative,
however, it does depend on knowledge of the background conduc-
tivity as well as the geometry and physical properties of the well. In
many scenarios, these may not be well-constrained, thus we select a
conservative threshold for this analysis. Any detectability analysis
will be site-dependent and we have therefore made all source-code
available so that a similar workflow may be followed and adapted
to include setting-specific parameters.

When a well is impaired, the total radial electric field is larger
than that due to the baseline, intact well. The strength of the sec-
ondary response decreases as the depth of the flaw increases. For
this example of a 1 km long well in a 10−1 S m–1 background, a flaw
at 900 m depth is not detectable; there is no overlap between the
region in which the secondary electric field (Fig. 6b) is above the
noise floor and the region in which the secondary field comprises
a significant percentage of the primary (Fig. 6c). This might be
expected, as the difference between the charges distributed along a
900-m-long segment versus the 1 km long well are not drastically
different. For a flaw at 700 m depth, there is a window between
400 m offset and 800 m offset over which the radial electric field
data are sensitive to the flaw. As the depth to the impairment de-
creases, both the spatial extent over which data are sensitive to the
flaw, and the magnitude of the secondary response in those data,
increase.

3.3.2 Background conductivity

The total charge on the well is controlled by the contrast in con-
ductivity between the steel-cased well and the surrounding geology.
Increasing the conductivity of the background reduces that contrast
thus reducing the amount of charge on the well. The result is a de-
crease in the total electric field at the surface. Similarly, the strength
of the secondary dipolar charge introduced with the presence of an
impairment also depends upon the available charge and will also be
reduced with increasing background conductivity. In Fig. 7, we have
adopted the same model of a 1 km well with a 10 m impairment at
500 m depth, and show the radial electric field for the flawed (solid
lines) and intact (dashed lines) wells as the background conductiv-
ity is varied. A resistive background promotes the strongest total
and secondary signals. As the conductivity increases, detectability
becomes more challenging; at a conductivity of 3 × 10−1 S m–1,
the flaw at 500 m depth is undetectable as there is no overlap in
the regions where the secondary signal is above the noise floor and
where it comprises a significant percentage of the primary.

Variations in the background geology will also influence the dis-
tribution of charges and thus the measured signal at the surface. To
examine the challenges introduced when variable geology is consid-
ered, we introduce a layer into the model and vary its conductivity.
The layer is 50 m thick and its top is at 400 m depth. The flaw will
again be positioned at 500 m depth, and the background conductiv-
ity is 10−1 S m–1. The return electrode is 500 m from the well, and
radial electric field data are measured along a line perpendicular to
the source. In Fig. 8, we show data for a flawed well (solid) and intact
well (dashed) for scenarios in which a conductive or resistive layer is
positioned above the flaw. The presence of a resistive layer improves
detectability, while a conductive layer reduces detectability.
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Direct current resistivity with steel-cased wells 7

Figure 5. (Top row) primary electric field, (second row) secondary electric field and (third row) secondary electric field as a percentage of the primary radial
electric field for a return electrode that is offset (a) 2000 m, (b) 750 m, (c) 500 m and (d) 250 m from the well. The primary is defined as the response due to
the 1000 m long, intact well. In each figure, the electrode locations are denoted by the red dots. In the third row, the colourbar has been limited between 20 and
100 per cent. The fourth and fifth rows show radial electric field data collected along the θ = 90

◦
azimuth (the white dotted lines in the top three rows). The

fourth row shows the primary (black line), the total electric field due to the flawed well (blue line) and the secondary radial electric field (orange line). The fifth
row shows the secondary as a percentage of the primary.

To understand the physical phenomena governing this, we have
plotted a cross section through: (a) the model, (b) the currents, (c)
the charges and (d) the electric field in Fig. 9. The first row shows
the results for a model of an intact well with a conductive layer
present and the second row shows the model with a flawed-well and
a conductive layer. Similarly, the third and fourth rows show the
results for an intact well and flawed well in a model with a resistive

layer. In both examples, there is two orders of magnitude difference
between the background and the layer. When a conductive layer is
present, we see that it acts to ‘short-circuit’ the system as there is
significant current leak-off into that layer. This reduces the amount
of current that reaches the flawed section of the well and decreases
the total charge on the well, which is the source of our signal.
Conversely, when a resistive layer is present, there is less leak-off of

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/1/1/5519862 by U

niversity of British C
olum

bia user on 16 August 2022



8 L.J. Heagy & D.W. Oldenburg

Figure 6. Radial electric field as the depth of the flaw along a 1-km-long well is varied. The positive electrode is connected to the top of the casing, the negative
electrode is positioned 500 m away and data are measured along a line 90

◦
from the source electrodes. In (a), we show the total electric field for four flawed

wells, each with a 10 m flaw at the depth indicated on the legend. The black line shows the radial electric field due to an intact well; we define this as the
primary. In (b), the secondary radial electric field is plotted and in (c), we show the secondary radial electric field as a percentage of the primary.

currents. In fact, Yang et al. (2016) showed that rather than leaking-
off, currents can enter the casing if a resistive layer is present. In
terms of detecting a flaw beneath a resistive layer, this means that the
current density and charge along the well increases, thus amplifying
the response due to the flaw.

3.3.3 Conductivity of the casing

The conductivity of the casing is also relevant to how the charges
are distributed along its length. For highly conductive wells, the
charge along the length of the well is approximately uniform. For
more resistive wells, the charges follow an exponential decay, as
shown in Fig. 10. Schenkel (1991) described the decay of currents,
and thus the distribution of charges along the length of a well, in

terms of the conduction length,

δL =
√

Sc

σ0
=

√
2πr tσc

σ0
, (5)

where Sc is the cross-sectional conductance of the casing (Sc =
2πrtσ c for a casing with radius r, thickness t, conductivity σ c and
has units of [S · m]) and σ 0 is the conductivity of the background.
The conduction length is akin to skin depth in electromagnetics and
is the depth at which the amplitude of currents have decreased by a
factor of e−1. Casing conductivities of 5 × 105, 5 × 106 and 5 × 107

S m–1 correspond to conduction lengths of ∼180, 560 and 1800 m.
For the most resistive well shown, 5 × 105 S m–1, the vast majority
of current has decayed well before it reaches the flaw; the majority
of charges are concentrated where the currents leak off, near the top
of the well. Correspondingly, there is greater sensitivity to a flaw in
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Direct current resistivity with steel-cased wells 9

Figure 7. Radial electric field as the conductivity of the background is varied for a 1 km well with a 10 m flaw at 500 m depth. The positive electrode is
connected to the top of the casing, the negative electrode is positioned 500 m away and data are measured along a line 90◦ from the source electrodes. In (a), we
show the total electric field for five different background conductivities, each indicated on the legend. The solid lines indicate the response of the flawed well
and the dashed lines indicate the response of the intact well (the primary). In (b), the secondary radial electric field is plotted and in (c), we show the secondary
radial electric field as a percentage of the primary.

a conductive well than in a resistive well, as is reflected in the radial
electric field data shown in Fig. 11.

3.3.4 Partial flaw

The above examples considered an impairment that affects the entire
circumference of the casing. This may be suitable in some scenarios
where a particular geological unit subjects the well to corrosive
conditions, however, flaws may also be vertical cracks along the well
(e.g. if pipe burst occurs). This is a much more challenging problem
for DC resistivity because if only a portion of the circumference is
impaired, there is still a high-conductivity pathway for currents to
flow along the entire length of the well. To examine the feasibility
of detecting a partial flaw, we have run simulations where half of the
circumference of the casing is compromised, leaving the other-half
intact.

We consider four different depth extents of the flaw between 10
and 300 m; in all scenarios the top of the flaw is at 500 m. In
Fig. 12(a), we have plotted the total radial electric field resulting
from an intact well (black), wells where the entire circumference
is compromised (solid) and wells in which 50 per cent of the cir-
cumference has been compromised (dashed). Figs 12(b) and (c)
show the secondary radial electric field and the secondary radial
electric field as a percentage of the primary radial electric field,
respectively.

These results show that the depth-extent of the flaw has little im-
pact on the fully-compromised wells. This conclusion is consistent
with the observations in our previous examples. However, if the well
is partially flawed, we do see variation in the secondary response. By
compromising 50 per cent of the circumference of the well, we have
reduced the effective cross-sectional conductance over that portion
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10 L.J. Heagy & D.W. Oldenburg

Figure 8. Radial electric field as the conductivity of a 50-m-thick layer positioned at 400 m depth is varied. The positive electrode is connected to the top of
the casing, the negative electrode is positioned 500 m away and data are measured along a line 90◦ from the source electrodes. In (a), we show the total electric
field for five different layer conductivities. The black line shows the scenario where the layer has the same conductivity as the background. The dashed-lines
indicate the intact well and the solid lines indicate the flawed well. In (b), the secondary radial electric field is plotted (with respect to an intact well primary)
and in (c), we show the secondary radial electric field as a percentage of the primary.

of the well. Numerical experiments show that if instead of intro-
ducing a flaw which comprises 50 per cent of the circumference of
the well, we reduce the conductivity of the intact well by 50 per cent
over the same depth extent as the flaw, we obtain similar, but not
identical, responses at the surface. Although for extensive flaws,
there is a small region over which the secondary signal is above the
noise floor, there are no regions where this coincides with measure-
ments where the secondary fields are a significant percentage of the
primary. There may be a subset of circumstances, such as if the flaw
is near to the surface, or if the background geology is sufficiently
well-known so that the percent threshold can be reduced, where a
partial flaw may be diagnosed, however, these results demonstrate
that a partial flaw is a challenging target for a DC resistivity survey.

In the next section, we transition from viewing the casing as
the target to working on the scale of a geophysical imaging appli-
cation in reservoir monitoring and viewing the casing as a high-
conductivity feature present in that setting.

4 S U RV E Y D E S I G N F O R E XC I T I N G
TA RG E T S AT D E P T H

There are many problems in hydraulic fracturing, carbon capture
and storage, and enhanced oil recovery that require targets to be
illuminated and data to be acquired and inverted. Typically, these
experiments include steel-cased wells and the target of interest could
be resistive or conductive. The target could be immediately adjacent
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Direct current resistivity with steel-cased wells 11

Figure 9. Cross section showing: (a) electrical conductivity, (b) current density, (c) charge density and (d) electric field for a top-casing DC resistivity
experiment over models with a conductive layer (top two rows) and a model with a resistive layer (bottom two rows). In all, the layer extends from 400 to
450 m depth. The plots in the second and fourth rows show the model, currents, charges and electric fields for a well with a 10 m flaw at 500 m depth.
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12 L.J. Heagy & D.W. Oldenburg

Figure 10. (a) Charge along the length of wells with three different conductivities (each indicated by a different colour in the legend). The intact wells are
denoted with dashed lines and the flawed wells are denoted with solid lines. (b) Secondary charge along the flawed and short wells. The primary is defined as
the electric field due to the 1000-m-long intact well. The return electrode is 2000 m away from the well.

to a well or offset from it, and the survey may use electrodes on
the surface or positioned down-hole. Similarly, receivers may be
positioned on the surface or in adjacent boreholes. Prior to designing
a suitable inversion algorithm for imaging a target, we must first
establish an understanding of how each of these factors influences
our ability to detect a target in our data.

Detectability of a target requires two steps: (1) source fields must
excite the target and (2) receivers must be positioned so that the
secondary response is measurable. In this section, we focus our
attention on the first point, exciting the target. We will examine
the impact of source electrode locations, the physical properties of
the target and the geometry of the target on our ability to excite a
response.

4.1 Source location

We begin by examining the impact of the source electrode location
on our ability to deliver current to a region of interest in the model.
We consider a 1 km long well in a 10−1 S m–1 background. The
well has a conductivity of 5 × 106 S m–1, an outer diameter of
10 cm and a 1 cm thickness; these are the same parameters used for
the casing integrity experiment described in the previous section.
The conductivity of the fluid filling the casing is identical to that
of the background. We are interested in effects near the well and
thus the modelling can be carried out using the 2-D cylindrical
mesh provided that the return electrode is sufficiently far away. The
return electrode is physically a disc of current at a radius equal to
the distance of the return electrode from the well, in this case 2 km.
The assumption of cylindrical symmetry and the use of a distant
return electrode has similarly been applied in Schenkel (1991).

To examine the impact that the source electrode location has on
our ability to excite a target, we consider the five electrode locations
shown in Fig. 13. Three of the electrodes are connected to the casing
(tophole - blue, centered - green, and downhole - red); the remaining
electrodes are not connected to the casing; these include the surface
electrode (orange) as well as the five electrodes near the end of
the pipe (purple - within the pipe, brown, pink, grey and yellow are
beneath the end of the pipe). The surface electrode (orange) is offset
from the well by 0.1 m.

To assess the ability of each electrode configuration to excite a
geological target of interest, we will examine the current density

in the formation. In Fig. 14, we have plotted the amplitude of the
current density along a vertical line (a) 25 m and (b) 50 m radially
offset from the well. In terms of survey design, we wish to choose a
source location that maximizes the total current density within the
depth region of interest. If the target is near the surface, we choose
an electrode which is connected to the top of the casing, or near the
casing at the surface. Interestingly, at depth, there is little distinction
between these two scenarios. This has been similarly noted by Patzer
et al. (2017, fig. 10 in particular). Thus, if one is limited to deploying
electrodes at the surface, and for practical purposes, connecting
infrastructure to the well-head presents a challenge, then grounding
the electrode near the well still results in a survey that benefits
from the well acting as a high-conductivity pathway to help deliver
current to depth. If the aim however, is to excite a deeper target,
we see that positioning the electrode downhole can significantly
increase the current density delivered to that depth. For example, if
we have a target near 500 m depth, positioning the electrode at that
depth nearly doubles the current density as compared to an electrode
at the surface. If a target is near the end of the well, between 800
and 1000 m depth, then positioning an electrode near the end of
the well triples the current density. This effect will be amplified if
the well is lengthened since we observe exponential decay of the
currents carried along according to the conduction length (eq. 5).

Kaufman (1990) pointed out that the difference in the distribu-
tion of currents between a survey where an electrode is positioned
along the axis of the casing and one in which the electrode is cou-
pled to the casing is localized near the electrode. Hence, whether
the electrode is coupled to the casing or not is inconsequential at
the scales we consider for geophysical imaging. We can test this
numerically by comparing the currents arising from the electrode
which is connected to the casing 5 m above the bottom of the casing
(red dashed line in Figs 13 and 14), and the electrode positioned
along the axis of the casing 1.25 m above the bottom of the casing
(purple in Figs 13 and 14). Indeed, we see that the red and purple
lines overlap for all offsets in Fig. 14, indicating that both situations
result in the same distribution of currents within the formation.

For electrodes beneath the casing, the distribution of currents is
significantly different. For electrodes 1.25, 5, 10 and 20 m below the
casing, we see that within a ∼100 m above and below the electrode
location, the currents are nearly symmetric, following the expected
response of a point source. We have included a simulation with
the electrode 20 m below the pipe when there is no casing present;
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Direct current resistivity with steel-cased wells 13

Figure 11. Radial electric field as the conductivity of the casing is varied for a 1 km well with a 10 m flaw at 500 m depth. The positive electrode is connected
to the top of the casing, the negative electrode is positioned 500 m away and data are measured along a line 90◦ from the source electrodes. In (a), we show the
total electric field for three different casing conductivities, each indicated on the legend. The solid lines indicate the response of the flawed well and the dashed
lines indicate the response of the intact well (the primary). In (b), the secondary radial electric field is plotted and in (c), we show the secondary radial electric
field as a percentage of the primary.

this is shown in black in Fig. 14. The main difference between the
distribution of currents for each of these scenarios is the reduction in
current density in the top 1000 m, with increasing electrode depth;
as the electrode is moved deeper, less current is channeled into
the casing. Schenkel & Morrison (1990) noted that for electrodes
positioned beneath a well, if the electrode is more than 100 casing
diameters beneath the casing, then the casing has little impact on
the fields below or far from the pipe. The current is much more
localized if the electrode is beneath the casing, and thus if a target
is beneath or very near the end of the well, then it is advantageous
to position the electrode beneath the well.

Not surprisingly, if the source electrode can be positioned near the
depth region of interest, the current density delivered to that region
is larger. Numerical experiments show that the position of the return
electrode makes minimal impact on the currents at depth. However,
if the return electrode is within 10’s of meters of the well, the near

surface currents are significantly altered. This is consistent with our
observations in Section 3, where we showed that the return electrode
location has little impact on the magnitude of the secondary signals,
but its position alters the geometry of the source fields and this can
be used to reduce coupling of receivers to the primary field.

4.2 Target properties

The physical property contrast between the target and the back-
ground, the target’s geometry, and its proximity to the well, all
influence our ability to observe its impact on the data we measure.
The purpose of this section is to explore the impact of these factors
on the excitation and detection of the target. In the first example, we
examine the role of the conductivity of a cylindrical target which is
in contact with the well. The second example is again a cylindrically
symmetric co-axial disc target but there is a gap between the casing
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14 L.J. Heagy & D.W. Oldenburg

Figure 12. Radial electric field as the vertical extent of the flaw is varied. The positive electrode is connected to the top of the casing, the negative electrode
is positioned 500 m away and data are measured along a line 90

◦
from the source electrodes. In (a), we show the total electric field corresponding to four

different flaw extents. The black line shows the response of the intact well. The dashed lines indicate the partially flawed wells (50 per cent of the circumference
is compromised) and the solid lines flawed wells in which the entire circumference of the well has been compromised. In (b), the secondary radial electric field
is plotted (with respect to an intact well primary) and in (c), we show the secondary radial electric field as a percentage of the primary.

and the target. For the following numerical simulations, the 3-D
cylindrical code is used.

4.2.1 Target in contact with the well

First, we consider a cylindrical target that is in contact with the well.
Schenkel & Morrison (1994) examined such a scenario for a conduc-
tive target (e.g. a steam injection or water flood) in a mise-à-la-masse
type experiment where a source electrode is connected to the casing
at the same depth as the center of the target. They considered a cross-
well experiment with potential electrodes in an offset, uncased well,
and compared two scenarios for the source well: one in which the
source well is an open-hole, and the second in which it was cased.
They demonstrated that the casing enhances the response, and thus
the data sensitivity to the target, as compared to an experiment where

current is injected directly into the target and no casing is present.
In this example, we build upon those findings and examine the role
of the conductivity of the target on our ability to excite it as well as
the impact on the data if the target is not directly in contact with the
well.

The model we use is a 1 km casing in a half-space with a target.
The target extends 25 m vertically and has a 25 m radius and the
depth to its top is 900 m. The model is cylindrically symmetric and
thus we expect that the secondary electric field at the surface due to
the target will be purely radial. As such, we apply the learnings from
the casing integrity example and use the return electrode to reduce
coupling with the primary field along a line perpendicular to the
source. We position the return electrode 500 m from the well-head
and we compare both top-casing and downhole source electrode
locations.
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Direct current resistivity with steel-cased wells 15

Figure 13. Electrode locations to be compared. The top casing electrode (blue), centered electrode (green, 500 m depth) and downhole electrode (red, 500 m
depth) are connected to the casing. The surface electrode (orange) is offset from the well by 0.1 m. The remaining electrodes are positioned along the axis of
the casing. Panel (a) shows the entire length of the casing, while (b) zooms in to the bottom of the casing to show the separation between the electrodes beneath
the casing.

Figure 14. Total current density along a vertical line offset (a) 25 and (b) 50 m from the axis of the casing, which extends from the surface (0 m) to 1000 m
depth. The electrode locations correspond to those shown in Fig. 13. For reference, a simulation with an electrode 20m below the casing when there is no
casing present is shown in black.

We begin by examining the physical behaviour governing the DC
response of a conductive and resistive target. Fig. 15 shows the (a)
conductivity model, and resultant: (b) current density, (c) charge
density and (d) electric fields for a conductive target (10 S m–1, top
row) and a resistive target (10−3 S m–1, bottom row) in a down-hole
experiment where the source electrode is positioned at the centre
of the target. The extent of the steel-cased well is noted by the
vertical black line in panel (a). For the conductive target, we see
an accumulation of positive charges along the radial and vertical
boundaries of the target. This is consistent with currents that exit a
conductor into a more resistive background. The physical response
is more complicated when the target is resistive. Intuitively, one
might expect that there will be a build up of negative charges on

the boundary as currents exit a resistor into a more conductive
background. This is what would be observed in a traditional mise-
à-la-masse experiment, where a point source is positioned within
the target (Fig. 16). However, when the casing is present, there is an
accumulation of positive charges on the top and bottom boundaries
of the target. Currents leak off along the entire length of the casing,
and some of those that leak off above and below the target are
deflected into the target. As a result, there is an accumulation of
positive charge on the resistive target. This asymmetry between
conductive and resistive targets is not intuitive and demonstrates
the power of numerical modelling for understanding the physical
responses.
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16 L.J. Heagy & D.W. Oldenburg

Figure 15. Cross section showing: (a) electrical conductivity, (b) current density, (c) charge density and (d) electric field for a DC resistivity experiment with
a conductive target (top) and a resistive target (bottom). The positive electrode is positioned in the casing at the 912.5 m depth. The casing is shown by the
black line that extends to 1 km depth in panel (a).

In a DC experiment, the electric field response we measure is a
result of the distribution of charges within the domain. As a metric
for quantifying excitation, we integrate the secondary charge over
this depth interval containing the target. In Table 1, we show the
secondary charge integrated over the depth interval containing the
target; the secondary charge on the casing within this region is
included in the calculation. To examine how the charge relates to
the electric field data, we have plotted (a) total radial electric field,
(b) secondary radial electric field (with respect to a primary that
includes the casing in a halfspace) and (c) the secondary radial
electric field as a percentage of the primary for a down-hole source
and similarly for a top-casing source (d, e, f) in Fig. 17. We have
adopted the same noise floor and percent threshold as in the casing
integrity examples (10−7 V m –1 and 20 per cent, respectively). For
time-lapse surveys where a baseline survey has been taken and
the background is well-characterized, this threshold could likely be
reduced. The black line in panels (a) and (d) corresponds to the
baseline model in which no target is present; each of the coloured
lines corresponds to a different target conductivity as indicated in
the legend.

First, we examine the impact of the conductivity of the target
and notice that there is an asymmetry between secondary charge on

conductive targets and resistive targets. For a 1 S m–1 target, which
is one order of magnitude more conductive than the background,
the integrated secondary charge is 1.75 × 10−11 C, while for a 1 ×
10−2 S m–1 target, which is one order of magnitude more resistive
than the background, the integrated secondary charge is −3.82 ×
10−12 C for the downhole casing experiment. Thus, there is a factor
of 4.6 between the magnitude of the secondary charge for these
targets; this is equivalent to the ratio we see between the secondary
electric field measurements at the surface observed in Fig. 17(b).
When also considering the influence of the primary electric field
on our ability to detect a target, we see that for a downhole casing
experiment, the conductive targets are detectable; they both have a
significant region where the secondary response is above the noise
floor and the secondary signal comprises a significant percentage
of the primary. The resistive targets, however, are not. Although
within 200 m of the well, the secondary signal is above the noise
floor, this also corresponds to where the primary field is large; the
percent threshold would need to be reduced to less than 5 per cent
in order to have confidence in the signals due to the resistive targets.

When comparing the downhole source to the top-casing source
experiments for a fixed conductivity, there is a factor of 3.9 between
the integrated secondary charge shown in 1; this is reflected in the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/1/1/5519862 by U

niversity of British C
olum

bia user on 16 August 2022



Direct current resistivity with steel-cased wells 17

Figure 16. Cross section showing: (a) electrical conductivity, (b) current density, (c) charge density and (d) electric field for a DC resistivity experiment with
a conductive target (top panels) and a resistive target (bottom panel). The positive electrode is positioned at 912.5 m depth. No casing is included in this
simulation. Note that the colourbars for the charge density (c) and electric field (d) are different than those used in Fig. 15. For the resistive target, the colourbar
is saturated, the charge density over the resistive target is on the order of 10−13 C m–3.

Table 1. Integrated secondary charge over a target adjacent to the casing,
as shown in Fig. 15.

Integrated secondary charge (C)

Target conductivity
(S m–1) Downhole source Top-casing source

1e-03 –4.24e-12 –1.08e-12
1e-02 –3.82e-12 –9.68e-13
1e-01 0.00e+00 0.00e+00
1e+00 1.75e-11 4.46e-12
1e+01 3.26e-11 8.28e-12

secondary electric field data in Figs 17(b) and (e). For the top-
casing experiment, none of the targets are detectable. There are
two factors that make this a more challenging experiment than the
downhole scenario: (1) less current is available to excite the target,
as reflected in Table 1 and (2) the primary field is stronger at the
receivers (200 m from the well the primary field has an amplitude of
10−5 V m–1, while for the downhole source experiment, the primary
has an amplitude of 2 × 10−6 V m–1). Addressing the excitation of
the target requires that the source electrode be positioned downhole,

closer to the target. The second point may be overcome if receivers
can be positioned closer to the target, for example within an adjacent
borehole.

In summary, the integrated secondary charge provides a metric
for a survey’s ability to excite a target, and shows that conductive
targets are easier to excite than resistive targets. As expected, if
the source electrode can be positioned near the target, excitation is
enhanced. This also has the added benefit of reducing the strength
of the primary electric field at the surface, as compared to a top-
casing survey; this increases the potential for detecting a target
with surface-based receivers. In the next section, we examine the
significance of the electrical connection between the casing and the
target.

4.2.2 Target not in contact with the well

How significant is the electrical connection between the casing and
the target for our ability to excite a response? To examine this, we
introduce a small gap equal to the thickness of the casing (1 cm)
between the casing and the target. This has negligible effect on the
volume of the target, but it changes the electrical characteristics of
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18 L.J. Heagy & D.W. Oldenburg

Figure 17. Radial electric field at the surface as the conductivity of a cylindrical target, in contact with the well, is varied. The target has a radius of 25 m
and extends in depth from 900 to 925 m. The return electrode is on the surface, 500 m from the well and data are measured along a line perpendicular to the
source. The panels on the left show (a) the total electric field, (b) the secondary electric field with respect to a primary that does not include the target and (c)
the secondary electric field as a percentage of the primary for a survey in which the positive electrode is positioned downhole at 912.5 m depth. The panels
on the right similarly show (d) the total electric field, (e) the secondary electric field and (f) the secondary electric field as a percentage of the primary for a
top-casing experiment.

the problem. Consider a conductive target; if it is in-contact with the
well, we are effectively conducting a mise-à-la-masse experiment,
and the conductor will have a net positive charge. When the target is
isolated from the casing, the total charge on the target must be zero,
and thus dipolar effects, in which negative charges build up on the
inner interface of the cylinder target and positive charges build up
on the outer interface of the target, will be the source of our signal.
This is demonstrated in Fig. 18.

The corresponding secondary charge integrated over the target
depth and radial electric field data are shown in Table 2 and Fig. 19.
For comparison, the data resulting from the target in contact with
the well are plotted in the dashed, semi-transparent lines. While
there is little difference in the integrated secondary charge or the
electric field measurements for the resistive targets, we see that
there is a factor of 1.3 difference (i.e. 30 per cent) between the
integrated secondary charges and correspondingly, the secondary
electric fields, from a 10 S m –1 target in contact with the well versus
not. Similarly, there is a factor of 1.2 (20 per cent) between a 1 S m–1

target in contact with the well versus not for both the downhole and
top-casing sources. Increasing the gap between the target and the
casing decreases the integrated charge and correspondingly reduces
the secondary electric field at the surface. The integrated secondary
charge for a 10 S m–1 target with a 10 cm gap between the target and
casing in a downhole source experiment is 1.7 × 10−11 C, which is
a factor of 2.2 smaller than the connected target; correspondingly

the electric field data at the surface are reduced by a factor of
2.2 as compared to the connected target. Thus, a direct, electrical
connection between the target and the well in which we connect the
source is preferable for exciting and detecting conductive targets.

Designing a survey for a specific setting may require incorpo-
ration of 3-D geological structures and may include inversions to
examine a survey’s ability to recover a target. In this case, it is de-
sirable to have a coarse-scale representation the steel-cased well on
the simulation mesh. This is the topic of the next section.

5 C OA R S E - S C A L E A P P ROX I M AT I O N S
O F T H E W E L L

When approaching the inverse problem, many forward simulations
are required, and typically, a 3-D cartesian mesh, with cells that
vary on the length scales of the geology, is desired. Thus, rather
than performing a fine-scale simulation of the steel-cased well, we
may wish to represent the well on a coarse mesh. In the literature,
two common approaches arise: the first approximates the well as
some form of ‘equivalent source,’ such as a charge distribution
(e.g. Weiss et al. 2016); the second approach represents the well
as a conductivity feature on the coarse-mesh (e.g. Swidinsky et al.
2013; Um et al. 2015; Yang et al. 2016; Kohnke et al. 2017; Puzyrev
et al. 2017, among others). Here, we will focus our attention to the
second approach, noting that a charge distribution along the length
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Direct current resistivity with steel-cased wells 19

Figure 18. Cross section showing: (a) electrical conductivity, (b) current density, (c) charge density and (d) electric field for a DC resistivity experiment with
a conductive target (top panels) and a resistive target (bottom panels) which is not in contact with the well. The positive electrode is positioned in the casing at
the 912.5 m depth. The casing is shown by the black line that extends to 1 km depth in panel (a).

Table 2. Integrated secondary charge over a target that is not electrically
connected to the casing, as shown in Fig. 18.

Integrated secondary charge (C)

Target conductivity
(S m–1) Downhole source Top-casing source

1e-03 –4.24e-12 –1.08e-12
1e-02 –3.80e-12 –9.64e-13
1e-01 0.00e+00 0.00e+00
1e+00 1.49e-11 3.79e-12
1e+01 2.51e-11 6.39e-12

of the well can be computed with the 2-D or 3-D cylindrical code
described in Heagy & Oldenburg (2019). Within the literature, there
is disagreement among approaches for selecting the conductivity of
the coarse-scale feature approximating the well. For example, Um
et al. (2015) replaces the fluid-filled cylinder with a solid rod having
the same conductivity as the casing, arguing that it is the contrast
between the conductivity of the well and the conductivity of the sur-
rounding geology that is the most important factor; Puzyrev et al.
(2017) also adopts this approach. Other authors have opted to pre-
serve the cross-sectional conductance of the well (Swidinsky et al.

2013; Kohnke et al. 2017); this is consistent with the transmission-
line model of the well discussed in Kaufman (1990). The aim of
this section is to analyse these approaches.

5.1 Replacing a hollow-cased well with a solid cylinder

We consider a steel-cased well with a conductivity of 5 × 106 S m–1

that is embedded in a 0.1 S m–1 halfspace; the conductivity of the
material that fills the well is the same as the background. The well
has an outer diameter of 10 cm and a thickness of 1 cm, and we will
vary its length. We will perform a top-casing experiment, where
the positive electrode is connected to the casing at the surface. The
return electrode is positioned 8 km away, and a cylindrically sym-
metric mesh is used in the simulations. We examine approximations
that treat the casing as a solid cylinder with the same outer-diameter
as the true, hollow-cased well.

The distribution of charges, or equivalently, the current in the
casing, is the source of the electric response of the casing. Thus
to judge if two models of the casing are ‘equivalent’, we examine
the current and charges as a function of depth. In Fig. 20, we have
plotted the vertical current and charges along the casing for the true,
hollow cased well (solid), solid cylinder with conductivity equal to

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/219/1/1/5519862 by U

niversity of British C
olum

bia user on 16 August 2022



20 L.J. Heagy & D.W. Oldenburg

Figure 19. Radial electric field at the surface as the conductivity of a cylindrical target, which is not in contact with the well, is varied. The target has a radius
of 25 m and extends in depth from 900 to 925 m. The return electrode is on the surface, 500 m from the well and data are measured along a line perpendicular
to the source. The panels on the left show (a) the total electric field, (b) the secondary electric field with respect to a primary that does not include the target
and (c) the secondary electric field as a percentage of the primary for a survey in which the positive electrode is positioned downhole at 912.5 m depth. The
panels on the right similarly show (d) the total electric field, (e) the secondary electric field and (f) the secondary electric field as a percentage of the primary
for a top-casing experiment. The data shown in Fig. 17, for the target in contact with the well, are plotted in the dashed, semi-transparent lines for reference.

that of the casing, 5 × 106 S m–1 (dashed), and solid cylinder with a
conductivity that preserves the product of the conductivity and the
cross-sectional area of the conductor, 1.8 × 106 (dotted), for four
different casing lengths, each indicated by a different colour. Fig. 20
shows: (a) the vertical current along the casing, (b) the difference in
current between the approximate model and the true model, (c) that
difference as a percentage of the true solution (d) the charge per unit
length, (e) difference in charge per unit length and (f) difference in
charge per unit length as a percentage of the true solution.

For short wells, we see that the current decays linearly and that the
charge distribution is nearly uniform above the end of the well, while
for longer wells, the decay of the current is exponential in nature,
as is the charge distribution. This behaviour is consistent with that
predicted by the transmission line solution described in Kaufman &
Wightman (1993). Kaufman & Wightman (1993) showed that the
transition between the linear decay of currents and the exponential
decay of currents is controlled by three factors: the cross sectional
conductance of the well, the resistivity of the surrounding formation,
and the length of the well. Schenkel (1991) similarly summarized
this behaviour in the definition of the conduction length (eq. 5),
which is the length over which the currents in the casing have
decayed by a factor of 1/e. For sufficiently conductive and short
wells (e.g. Lc/δ � 1, where Lc is the length of the casing), the
current decay is linear and independent of the conductivity, whereas
for longer wells, (Lc/δ � 1), the rate of decay of the currents is

controlled by the conduction length (see eqs 45 and 53 in Kaufman
& Wightman 1993).

In preserving the cross-sectional conductance, we see that the
difference in currents and charges along the length of the well is
negligible; the maximum difference in currents for the 2000-m-
long well which has equivalent cross-sectional conductance is 7
× 10−7 A as compared to the difference of 0.18 A when using the
conductivity of the casing. This difference is important as it changes
how much current is available to excite a target at depth. For a 2000-
m-long well, the current is overestimated by > 150 per cent if the
well is replaced by a solid cylinder with the same conductivity of
the steel-cased well. It also changes the distribution of charges and
thus the electric field due to the well. Fig. 20(e) shows us that the
extra conductance introduced when approximating the well using
the conductivity equal to the casing results in a secondary dipolar
charge on the casing. This in turn reduces the electric field we
observe at the surface, as shown in Fig. 21. For a long well, the
difference can be as large as 40 per cent near the well.

The numerical time-domain EM experiment used in Um et al.
(2015) to demonstrate the approximation of the well by a solid,
conductive rod having the same conductivity as the steel-cased well
used a 200 m long well with a thickness of 12.223 mm, outer
diameter of 135 mm, conductivity of 106 S m–1 in 0.033 S m–1 half-
space. The conduction length of this well is 560 m; this is more than
twice the length of the well. Therefore, the behaviour of the currents
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Figure 20. Currents (top row) and charges (bottom row) along the length of a hollow steel-cased well (solid lines), solid cylinder with conductivity equal to
that of the steel-cased well (dashed-lines), and a solid cylinder with a conductivity such that the product of the conductivity and the cross sectional area of the
cylinder is equal to that of the hollow-pipe (dotted lines). Each of the line-colours corresponds to a different casing length, as indicated in the legend. In (a), we
show the vertical current in the casing, (b) shows the difference from the true, hollow-cased well in the vertical current within the casing, and (c) shows that
difference as a percentage of the true currents. In (d), we show the charge per unit length along the casing, (e) shows the difference from the true, hollow-cased
well and (f) shows that differences as a percentage of the true charge distribution. The x-axis on all plots is depth normalized by the length of the casing.

Figure 21. Radial electric field measured at the surface for a model of a hollow steel-cased well (solid lines), a solid cylinder with conductivity equal to that of
the steel-cased well (dashed-lines), and a solid cylinder with a conductivity such that the product of the conductivity and the cross sectional area of the cylinder
is equal to that of the hollow-pipe (dotted lines). Each of the line-colours corresponds to a different casing length, as indicated in the legend. In (a), we show
the total radial electric field, (b) shows the difference in electric field from that due to the true, hollow-cased well and (c) shows that difference as a percentage
of the true electric fields. The x-axis on all plots is distance from the well normalized by the length of the casing.

falls into the linear regime, where the decay of currents is mostly
independent of the conductivity, and thus the difference between
using the conductivity of the casing or preserving cross-sectional
conductance is less significant. However, if longer wells such as
those typically used in hydrocarbon settings, are considered, the
behaviour of the currents and charges depends upon the conductance
of the casing, and thus that is the quantity that should be conserved
in an approximation of the hollow-cased well by a solid rod.

In order to confirm that this conclusion is valid for variable ge-
ology, we have included a simulation with a 2-km-long casing in a
layered background. Each layer is 50 m thick and the conductivity
was assigned randomly; three instances are included, as shown in
Fig. 22. The mean of the background conductivity is 0.1 S m–1 for
each of the models.

The currents and charges along the length of the well for the true
model, and a model approximating the well as a solid cylinder with
equal cross-sectional conductance, are shown in Fig. 23. For all of
the models shown, the difference in both the casing currents and

the charges are 5 orders of magnitude less than the amplitude of the
total currents and charges; thus we conclude that approximating a
hollow cylindrical steel casing by a solid cylinder with a conduc-
tivity that preserves cross-sectional conductance is valid for models
with variable geology.

5.2 Cartesian grid

In the previous section, we showed that a hollow, cylindrical steel-
cased well can be approximated by a solid cylinder with equal
cross-sectional conductance. In this section, we move to a coarser,
cartesian mesh, such as might be used in settings with multiple
boreholes. We examine a simple approximation of a steel cased
well on a cartesian grid. We use four tensor meshes, each with
progressively larger cell widths for the finest cells that capture the
casing. On each of the cartesian meshes, we approximate the casing
by preserving the product of the conductivity and the cross sectional
area on the mesh. For comparison, we run a fine-scale simulation
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22 L.J. Heagy & D.W. Oldenburg

Figure 22. Three realizations of a 2 km long casing in a layered background, where the conductivity of the layers is assigned randomly. Each layer is 50 m
thick, and the mean conductivity of the background is 0.1 S m–1. The colour of the title corresponds to the plots of the currents and charges in Fig. 23.

Figure 23. (a) Total vertical current through the casing for the three layered-earth models shown in Fig. 22. The solid lines indicate the response of the true,
hollow steel cased-well and the dotted lines indicate the response of a solid cylinder having the same cross-sectional conductance as the hollow well. (b)
Difference between the currents along the casing in the solid well approximation and the true, hollow well. (c) Charge per unit length for each of the models.
(d) Difference in charge per unit length between the true model of the casing and the approximation which preserves cross-sectional conductance.

on a 3-D cylindrical mesh that accurately discretizes the casing; it
uses four cells across the casing-wall. The casing model is similar
to that used in previous examples: it is 1 km long, has an outer
diameter of 10 cm, a thickness of 1 cm, and is embedded in a 0.1
S m–1 half-space. The positive electrode is connected to the top of
the casing and a return electrode is positioned 1 km from the well-
head. Table 3 summarizes the number of cells in each mesh and the

computation time for each simulation.
The resultant currents and charge per unit length are shown in

Fig. 24. In the top row, panel (a) shows the total current in a region
approximating the well, along with the total current in the ‘true’
cylindrical well (black line), (b) shows the difference between the
current through the cartesian cells and the true model, and (c) shows
the difference as a percentage. Similarly, in the bottom row, we show
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Table 3. Mesh parameters and computation time for each forward simu-
lation on a 2.7 GHz Intel Core i7 processor. The hollow steel-cased well
is discretized on the 3-D cylindrical mesh with four cells across the thick-
ness of the casing. We treat this as the baseline solution. For each of the
carestian simulations, the casing is captured by single cell in the horizontal
dimensions.

Mesh type
Smallest cell

width (m) Number of cells Compute time (s)
3-D cylindrical 2.5 × 10−3 430 528 9

Cartesian 0.1 1 090 026 131
0.2 971 022 119
0.4 889 998 87
0.8 738 078 56

(d) the charge per unit length along the cylindrical well (black line)
and cartesian-prism approximations, (e) the difference in charge per
unit length from the charge per unit length on the true cylindrical
model and (f) that difference as a percentage of the charge per unit
length on the cylindrical well.

The approximation of the cylindrical well by a rectangular prism
with width equal to the diameter of the casing introduces minimal
error in the currents and charges computed using a finite volume
approach, even though the casing is only captured by one cell across
its width. Comparing the current along the length of the well for the
3-D cylindrical well and the cartesian simulation with 0.1 m cells,
we see that the error introduced is < 2.5 per cent (until the end of the
well where the current approaches zero). Similarly, the difference
in the charge per unit length is < ±1.25 per cent. As successively
coarser discretizations are used, accuracy is gradually lost; by dou-
bling the cell sizes to 0.2 m, the error in the currents is 6 per cent at
its maximum and < ±3 per cent in the charge along the casing. A
factor of 8 increase in cell size (0.8 m cells) results in a maximum
error of 15 per cent in the currents. It is important to note that the
forward simulation is conducted using a finite volume approach;
other approaches such as finite difference or integral equation ap-
proaches may have worse agreement if care is not taken to handle
large physical property contrasts, captured by a single cell, in the
simulation. Note that the behaviour of the errors depends upon the
properties of the casing (e.g. conductivity and length) as well as the
conductivity of the background. This might be expected from the
description of the casing conduction length (eq. 5). If the conduc-
tion length is large relative to the length of the well, the currents
decay linearly, and the geometry and conductivity of the well are
less significant in the behaviour of the currents. Alternatively, if
the conduction length is comparable to the length of the well, the
currents decay exponentially with a decay rate that depends on the
geometry and conductivity of the well. For example, if the back-
ground is more resistive, increasing the contrast between the casing
and background, the reduces the errors. Using a background con-
ductivity of 100 	m, the maximum error introduced in the current
is < 1 per cent with 0.1m cells and < 2 per cent with 0.8 m cells.

Depending on the level of accuracy required in a 3-D simu-
lation, there are several strategies that one might take to reduce
this error. In some cases, local refinement can be achieved with a
tetrahedral mesh, as is often used when using finite element tech-
niques (Weiss et al. 2016), or an OcTree mesh (Haber et al. 2007).
Other, more advanced approaches including upscaling and multi-
scale could also be considered (Haber & Ruthotto 2018; Caudillo-
Mata et al. 2017a,b). In an upscaling approach, one inverts for a
conductivity model, which might be anisotropic, that replicates the

physical behaviour of interest (Caudillo-Mata et al. 2017a). Mul-
tiscale techniques translate conductivity information from a fine-
scale mesh to a coarse-scale mesh, on which the full simulation
is to be solved, using a coarse-to-fine interpolation that is found
by solving Maxwell’s equations on the fine mesh locally for each
coarse grid cell (Caudillo-Mata et al. 2017b; Haber & Ruthotto
2018). For treating multiple wells, Weiss (2017) introduces a finite
element scheme which allows the user to define conductivities not
only as volume-filling cell-centred values, but also as conductive
features on the faces, and edges of the mesh. Other approaches in
electromagnetics include approximating the well with a series of
electric dipoles (Kohnke et al. 2017; Patzer et al. 2017). The 3-D
cylindrical forward simulation code that is described in Heagy &
Oldenburg (2019) and used in this example can serve as a tool for
validating and refining an approach to achieve the desired level of
accuracy.

6 D I S C U S S I O N

The work in this paper is motivated by the increasing use of steel
cased wells in geoscience problems, including monitoring applica-
tions such as carbon capture and storage and hydraulic fracturing.
For geophysical imaging of targets at depth, the wells are beneficial
as they can be used to channel currents to depth and enhance signals
at the surface for targets that otherwise would be undetectable from
a surface-based survey. Additionally, there is interest in considering
the casing itself as the target of the geophysical target in casing
integrity experiments; here the aim is to detect flaws or breaks in
the casing. These applications, coupled with advances in modelling
capabilities, open up the potential for advancing the utility of elec-
trical and electromagnetic imaging in settings with metallic-cased
wells.

Despite this potential, the reality is that electric fields, especially
if measured at the Earth’s surface, are small. Secondary fields might
only be a few percent of the primary field, and thus too insignificant
to reliably detect the target of interest. The success of using a DC or
EM survey then depends upon many details that pertain to under-
standing the basic physics, the effects of parameters of the casing,
the background conductivity, location of the current electrodes and
discerning which fields should be measured. DC resistivity is the
starting point, as it allows us to examine the currents, charges and
electric fields in the electrostatic limit, prior to introducing inductive
effects and the influence of magnetic permeability in an EM signal.
Regarding the physics, a DC survey involves attaching a current
generator to a conductive medium. This establishes a steady state
current; the signal to which we are sensitive is the electric field that
arises from charges that accumulate at interfaces separating regions
of different conductivity. For this reason, most of our results are first
presented as currents and charges.

The large contrasts in physical properties and significant varia-
tion in length scales due to long, thin, cylindrical, steel-cased wells
prompt a number of questions about how the DC fields behave. In
many cases, the finer details about the physical responses has chal-
lenged our intuition. With respect to the casing integrity application
there were basic questions: how does a flaw in the pipe affect the
currents and electric fields measured at the surface? Does the extent
of the flaw change our ability to detect it (e.g. if it has a vertical
extent of several meters versus a vertical extent of centimeters)?
What happens if the flaw only comprises a part of the well, leaving
some connectedness in the casing? When considering a geophysical
experiment for imaging a target: is there a significant difference in
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24 L.J. Heagy & D.W. Oldenburg

Figure 24. Currents (top row) and charges (bottom row) along the length of a steel cased well. The ‘true’ hollow-cased well is simulated on a 3-D cylindrical
mesh and has four cells across the width of the casing thickness (black line). The coloured lines correspond to the currents and charges computed along the well
represented on a cartesian mesh with cell widths shown in the legend. The finest vertical discretization is 2.5 m in all simulations. To represent the hollow cased
well on the cartesian mesh, the cells intersected by the casing are assigned a conductivity that preserves the product of the conductivity and cross-sectional
area of the well. In (a), we show the vertical current in the casing, (b) shows the difference from the true, hollow-cased well in the vertical current within the
casing and (c) shows that difference as a percentage of the true currents. In (d), we show the charge per unit length along the casing, (e) shows the difference
from the true, hollow-cased well and (f) shows that differences as a percentage of the true charge distribution.

the currents at depth between scenarios where a source electrode is
connected to the well-head at the surface and one where the source
electrode is offset from the well by a few metres? Can we detect both
conductive and resistive targets? What is the physical mechanism
which generates the signal in both scenarios? A major goal of the
DC survey will be to excite and detect target bodies. For problems,
such as CO2 sequestration, enhanced oil recovery, or hydraulic frac-
turing, the target may or may not be in contact with the well; how
significant is an electrical contact between a target and the well in
the data we measure at the surface? Looking towards solving in-
verse problems in settings with steel-cased wells, it is advantageous
to reduce the computational cost of the forward simulation because
an inversion requires many forward simulations. Can a coarse-scale
approximation of the well be used? What is the correct conductivity
needed for substitution?

Some of the above questions have been addressed in theoretical
papers extending back a few decades but numerical verification was
often limited or carried out with simplifying assumptions. Other
questions require the ability to carry out numerical modeling in 2-D
or 3-D environments—these tools are just now becoming available.
Our goal with this paper has been to examine the scientific ques-
tions above and to promote insight about the solution by plotting
the currents, charges and electric fields. This analysis has bene-
fited from the ease with which fields, fluxes and charges are readily
calculated and visualized within the SimPEG framework, partic-
ularly when used in conjunction with Jupyter notebooks. Source
codes for all of the examples in this paper are available in the
form of Jupyter notebooks at https://github.com/simpeg-research
/heagy-2018-dc-casing (Heagy 2018); our aim in providing these
notebooks is to allow readers to reproduce the results shown and
also adapt the parameters and extend the analysis to address their
questions.

7 C O N C LU S I O N S

In this paper, we have provided an overview of the fundamental
physics governing the behaviour of currents, charges and electric
fields DC resistivity experiments with steel-cased wells for both
casing integrity experiments and geophysical imaging applications.
With respect to casing integrity, we considered a top-casing DC re-
sistivity experiment to detect an impairment in the well. We showed
that if a flaw comprises the entire circumference of some depth inter-
val along the casing, then the charges are concentrated in the portion
of the well above the flaw, and to first approximation, the charge
distribution is equal to that of a well which has been truncated at the
depth of the flaw. This excess charge is the source of our signal. As
it is cylindrically symmetric, the resultant secondary electric fields
due to the flaw are purely radial. In terms of survey-design, we
can take advantage of this knowledge and use the return electrode
location to reduce coupling with the primary electric field in our
data. Our ability to detect a flaw across the entire circumference of
the casing depends upon the conductivity of the background and
casing, as well as the depth of the flaw. Larger contrasts between the
casing and the background (e.g. a more resistive background and/or
a more conductive casing) increase the secondary response, as does
decreasing the depth of the flaw. If only a portion of the circum-
ference is impaired, leaving a conductive pathway connecting the
top and bottom portions of the casing, the secondary signal is small
and thus will be challenging to detect under most circumstances.
For the subset of scenarios where we do have data sensitivity to the
flaw, an inverse problem can be solved to estimate the depth of the
impairment. One approach would be to use a reduced modelling
procedure whereby only a few parameters are sought. For the case
presented here, we might invert for a smooth background, the length
of the well, and potentially the conductivity of the casing, if it is not
known a priori.
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For situations where the aim is to image a target at depth, we
showed that a downhole electrode is preferable to a top-casing
source for two reasons. First, for long wells, the magnitude of cur-
rents decay with distance from the source, thus having the source
near the target increases the current density available to excite a
response. Secondly, the strength of the primary at the surface is
reduced if the source is downhole; this makes the secondary field a
larger percentage of the primary. For targets in close proximity to the
well, if the target is in contact with the well, that electrical connec-
tion enhances the response. Our numerical modelling demonstrated
that there is a non-intuitive asymmetry between the excitation of
conductive targets and resistive targets that are in contact with the
well. Conductive targets have a positive charge build-up on all inter-
faces while resistive targets have an accumulation of both positive
and negative charges. Thus, under these circumstances, conductive
targets are easier to detect than resistive targets.

Finally, we considered common strategies for approximating a
hollow steel-cased well and demonstrated that the product of the
conductivity and the cross-sectional area of the casing is the impor-
tant quantity to conserve for DC simulations. This approximation is
suitable for simulation grids whose cell-widths are similar in scale
to the diameter of the casing. If cell widths exceed the diameter
of the casing, then more advanced numerical approaches, such as
those presented in Weiss (2017) and Caudillo-Mata et al. (2017b)
could be considered to improve accuracy.

The next set of research questions include developing strategies
for solving the DC inverse problem in settings with steel-cased
wells as well as extensions to time and frequency domain electro-
magnetics. Time-varying fields introduce inductive processes and
require that magnetic permeability be considered. These factors fur-
ther complicate the physics, but they also provide richer information
content in the data and that will be valuable for solving the inverse
problem. In those problems, just as shown here for DC, detailed
numerical simulations will continue to be a critical component for
developing an understanding of the physics.
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