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SUMMARY

Electrical conductivity can be a diagnostic physical property
for distinguishing geologic units and delineating the distribu-
tion of fluids such as hydrocarbons and saline water within
these units. Electromagnetic (EM) methods are sensitive to
conductivity contrasts and can be used to characterize them.
They are increasingly being applied in settings where cased
wells are present. Most commonly-used casing materials, such
as steel, are highly conductive, have a significant, often vari-
able, magnetic permeability, and therefore significantly impact
the behavior of the EM fields and fluxes. The aim of this pa-
per is to revisit numerical modelling strategies to investigate
the role of various properties and complexities due to the cas-
ing, and present a modelling and inversion strategy, using a
primary-secondary approach, for capturing the impacts of both
the variable casing and three dimensional geologic structures
on EM data.

INTRODUCTION
Variations in subsurface electrical conductivity have been used
as a diagnostic physical property in sedimentary settings for
characterizing geologic formations, and the properties and dis-
tribution of fluids within those formations. Hydrocarbons and
CO2 are much more resistive than saline formation fluids, and
are typically more resistive than fluids injected during enhanced
recovery projects. This contrast has been the target of cross-
well, surface-to-borehole and borehole-to-surface electromag-
netic (EM) methods for monitoring and characterization appli-
cations (cf. Marsala et al. (2008, 2011); Wilt et al. (1995)).
These surveys are typically conducted in settings that have
cased wells, and the many of the associated modelling strate-
gies have focused on characterizing the distortion of the trans-
mitted and received signals. Cuevas (2014b) provides analyti-
cal solutions for dipolar sources in an infinite cylinder, which
has supported modelling and inversion approaches that replace
the casing in a model with an “equivalent source” created us-
ing a series of electric or magnetic dipoles (cf. Cuevas (2012)).
Alternatively, some approaches to the inverse problem aim to
bypass characterizing the response of the casing through con-
structing a datum that is independent of the casing effect and
taking ratios of measured electromagnetic responses (Gao et al.,
2008; Liu et al., 2008). More recently, there has been growing
interest in using the casing as an extended source for carry-
ing signal to reservoir depths (Commer et al., 2015; Hoversten
et al., 2014; Marsala et al., 2014; Cuevas, 2014a). The aim of
this paper is to revisit modelling strategies to allow for the in-
vestigation of the role of various properties and complexities
due to the casing, and present a modelling and inversion strat-
egy for capturing the impacts of both the variable casing and
three dimensional geologic structures on EM data.

Modelling and inverting EM geophysical data collected in set-
tings including cased wells presents several significant chal-

lenges. Most wells are cased with carbon steel, which has both
a large electrical conductivity (∼ 5.5 × 106 S/m), and mag-
netic permeability (∼ 50µ0) (Wu and Habashy, 1994). This is
a large contrast to typical geologic settings, with conductivities
typically less than 1 S/m and permeabilities similar to that of
free space, µ0. As a result, the casing may have a significant
impact on the behavior of the EM fields and fluxes. The prop-
erties, in particular, magnetic susceptibility, as well as casing
thickness can vary along the length of the well, depending both
on the quality of the steel and the state of corrosion, adding an-
other level of complexity to the situation. Well logging tools,
such as that described by Brill et al. (2012) have been devel-
oped to characterize these variations.

Not only does casing introduce a large, variable, physical prop-
erty contrast, its geometry and scale add to the difficulty. Well
casing is cylindrical in shape and only millimeters to centime-
ters thick, while the geologic structures we aim to characterize
with the geophysical survey have three dimensional variations
in electrical conductivity on the scale of hundreds of meters
to kilometers. Approaches tailored to accurately modelling
the impact of the casing may be geometrically incompatible or
computationally prohibitive to use when reservoir-scale, three-
dimensional geologic structures are included in the conductiv-
ity model.

In this paper, we concentrate on two aspects of this problem.
The first looks at the details of modelling a casing with compli-
cated physical properties and examining the effects of putting
different sources (both galvanic and inductive) at various loca-
tions in/on the casing. Second, we demonstrate how a primary-
secondary approach for solving Maxwell’s equations (cf. Haber
(2015)) may be used to model three-dimensional geologic struc-
tures in settings including cased wells. This approach allows
the problem of simulating the casing and the three dimensional
geologic structures to be treated as two distinct problems. We
first compute the response due to the transmitter and casing
in a simple geologic background. In particular, we consider a
vertical well in a one-dimensional geologic background and
exploit cylindrical symmetry for computing the primary re-
sponse. Secondly, we interpolate these fields to the secondary
mesh, where they are used as a source for the secondary re-
sponse. By decoupling these two problems the mesh design,
computational strategies and model complexities for each prob-
lem can be treated separately.

APPROACH
To motivate our discussion, we consider the model shown in
Figure 1, consisting of a vertical well in a layered background
with a three- dimensional, resistive region in the reservoir layer,
which is the target of the geophysical survey. The casing is
composed of carbon steel (5.5 × 106S/m) and is filled with
water-based drilling mud (1S/m). We will consider three cas-
ing models in which we vary the magnetic permeability. In
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the first, we neglect any contributions of permeability, treat-
ing it as equal to that of free space (µ0); in the second we use
a constant value of 50µ0; in the third we consider a casing
with variable permeability by including a segment which has
a permeability of 150µ0. For brevity of this example, we ne-
glect surface casing and conductivity variations introduced by
cement and invasion of drilling fluids into the surrounding for-
mations. We employ a simple geologic background consisting
of four layers, as shown in Figure 1 and consider the frequency
domain electromagnetic (FDEM) problem with three sources
(illustrated in Figure 1) for inputting EM energy into the sys-
tem: (1) using a downhole magnetic dipole source, (2) using
a downhole galvanic source, and (3) exciting the casing at the
surface using a galvanic source.

Figure 1: Sketch of casing and geologic model (not to scale).

Modelling the casing: Primary
We begin by considering approaches for modelling the casing
and associated structures, as shown in the upper right panel of
Figure 1. The background geologic model is one-dimensional,
and for the sources we are considering, the problem is cylin-
drically symmetric. We take advantage of the symmetry using
a 2.5D cylindrical mesh to calculate the primary EM response.
To numerically simulate the FDEM problem, we examine two
formulations of Maxwell’s equations: the E-B and H-J formu-
lations. Each of these formulations is a set of partial differen-
tial equations connecting a field and a flux. The E-B formu-
lation links the electric field, ~E and the magnetic flux density
~B:

∇×~E + iω~B = 0

∇×µ−1~B−σ~E =~s
(1)

where i is the imaginary unit, ω = 2π f is the angular fre-
quency, µ is the magnetic permeability, σ is the electrical con-
ductivity, and ~s is the source current density. Alternatively,
we can consider the H-J formulation which uses the magnetic
field ~H, and the current density ~J. This formulation is related
to the E-B formulation by the constitutive relations: ~J = σ~E,
and ~B = µ~H and is given by

∇×ρ~J+ iωµ~H = 0

∇× ~H − ~J =~s
(2)

where ρ = σ−1 is resistivity. Although equivalent in the con-
tinuous form, the act of discretizing makes these two formula-
tions distinct.

To numerically model Maxwell’s equations, we use a mimetic
finite volume approach with a staggered grid, where fields are
discretized on edges, fluxes on faces, and physical properties
in cell centers (cf. Haber (2015)), as shown in Figure 2 and
summarized for the two formulations of Maxwell’s equations
in Table . For the cylindrically symmetric mesh (Figure 2b),
edges exist only in the θ direction, while faces exist only in
the r and z directions; there are no nodes. The imposed sym-
metry present in this discretization means that fields are re-
stricted to having only a θ component, while fluxes only have
vertical and radial components. These distinctions are impor-
tant when considering the differences between inductive and
galvanic sources. For inductive sources, we require a mod-
elling strategy that allows magnetic flux to have vertical and
radial components. For inductive sources, however, we re-
quire that the current density has vertical and radial compo-
nents. To achieve these modelling requirements, we use the E-
B formulation for inductive sources, and the H-J formulation
for galvanic sources, as summarized in Table and Figure 2.

Figure 2: A finite volume mesh cell showing locations of scalar
and vector properties in (a) cartesian coordinates and (b) cylin-
drical coordinates.

Formulation cell centers edges faces
E-B µ−1, σ ~E ~B
H-J µ , ρ ~H ~J

Table 1: Discretization of variables for two formulations of the
FDEM problem.

Example
Returning to the casing model shown in the top right hand side
of Figure 1, we forward-simulated the EM response of the well
casing and 1D geologic background for three sources: (1) a
downhole magnetic source, (2) a downhole galvanic source,
and (3) a surface galvanic source. For the following simula-
tions we use SIMPEG and SIMPEGEM (Cockett et al., 2015;
Kang et al., 2015).

In Figure 3, we compare the in-phase, horizontal component
of: (a) the magnetic flux resulting from excitation with the
downhole inductive source; (b) the current density from the
downhole galvanic source; and (c) the current density from the
surface galvanic source at a distance of 100m from the center
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of the well. We show the in-phase responses for two casing
models: (1) where the permeability of the casing is assumed
to be that of free space (solid lines), and (2) where the perme-
ability of the casing is a constant value of 50µ0 along the well
(dashed lines). Each of these two scenarios is completed for
frequencies of 0.1 Hz (blue), 1 Hz (green) and 5 Hz (red). For
these comparisons, we are interested in the relative responses
in each scenario, irrespective of the source strength, as such,
note that the responses have been normalized. For both the
downhole magnetic and galvanic sources, the impact of µ on
the signal is minimal until the frequency is high enough for
inductive effects to be observed, as seen by the 5Hz responses
for both of these sources. For the surface galvanic source, the
impact of the variations in µ is apparent over a larger range
of frequencies, as we can see differences in both the 0.1Hz
and 5Hz signals. The difference between the 5Hz signals for
the two casing models is more significant for the surface gal-
vanic source (c) then the downhole sources, (a) and (b), as may
be expected, due to the larger distance over which the signal
has travelled in the casing. To examine the impact of variable

Figure 3: Normalized in-phase responses. Horizontal compo-
nent of: (a) magnetic flux from the magnetic dipole source,
(b) current density for the downhole galvanic source, (c) cur-
rent density for the surface galvanic source at a radial distance
of 100m from the center of the well for frequencies of 0.1Hz
(blue), 1Hz (green) and 5Hz (red). The solid lines treat the
permeability of the casing as equal to µ0, and the dashed lines
use a permeability of 50µ0.

magnetic permeability on the behavior of the fields, we now
include a 15 m segment having a permeability of 150µ0 in our
casing model, as shown in the illustration in Figure 1. In Fig-
ure 4, we show the normalized, in-phase horizontal component
of (a) the magnetic flux for the downhole inductive source, (b)
the current density for the downhole galvanic source, and (c)
the current density for the surface galvanic source, all at a dis-
tance of 100m from the center of the well. The solid lines are
the casing models with µ = µ0, the dashed is the casing model
with a constant value of µ = 50µ0 and the dotted lines are the
model with the segment of highly permeable material (150µ0).
For the downhole magnetic source, we see that the highly per-
meable segment has a significant impact as frequency is in-
creased. These effects are similarly observed for the down-
hole galvanic source, but their role is less pronounced. For the
surface galvanic source, we see that including a highly perme-
able section at depth has minimal impact beyond that observed

for the scenario where µ = 50µ0. Even for the simple cas-

Figure 4: Normalized in-phase response. Horizontal compo-
nent of the (a) magnetic flux from the magnetic dipole source,
(b) current density for the downhole galvanic source, (c) cur-
rent density for the surface galvanic source at a radial distance
of 100m from the center of the well for frequencies of 1Hz
(green) and 5Hz (red). The solid lines treat the permeability
of the casing as equal to µ0, the dashed lines use a permeabil-
ity of 50µ0, and the dotted lines are the model having a 15 m
segment of casing with a permeability of 150µ0.

ing model we have considered, we see that the impact of the
casing’s magnetic permeability on the signal can be signifi-
cant depending on the source type, location, and frequency.
By first considering a simple geologic background, we have
focused our modelling efforts on understanding the impact of
parameters and structures associated with the casing. Further
complexities associated with the casing, such as surface cas-
ing, cement, drilling fluid invasion into the surrounding for-
mations, and variations in casing thickness may also be incor-
porated at this stage in the primary-secondary approach to the
modelling.

Primary-Secondary
Next, we need a means of linking the two problems: mod-
elling the casing, and modelling the three dimensional geo-
logic structures. For this, we consider the primary-secondary
approach. We will develop this using the E-B formulation of
Maxwell’s equations (1), but the same procedure can be fol-
lowed in either formulation. We consider the physical prop-
erties, fields, and fluxes to be composed of two components,
a primary and a secondary: σ = σp +σs, µ−1 = µ−1

p + µ−1
s ,

~E = ~Ep +~Es and ~B = ~Bp +~Bs. We choose the primary phys-
ical properties to capture the physical properties of the casing
and simple geologic background, as discussed in the previous
section and satisfies

∇×~Ep + iω~Bp = 0

∇×µ−1
p ~Bp −σp~Ep =~s

(3)

The secondary fields then must satisfy

∇×~Es + iω~Bs = 0

∇×µ−1~Bs −σ~Es =~q

~q =−(∇× (µ−1 −µ−1
p )~Bp − (σ −σp)~Ep)

(4)

That is, we have defined the source term: ~q for the secondary
fields. This source is located where there are differences be-
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tween the full physical property models of µ−1 and σ and the
physical property models captured by the primary, mu−1

p and
σp. In the case of the model shown in Figure 1, this is the re-
sistive region of the reservoir. As this region has µ = µ0, it is
only the contrast in electrical conductivity that contributes to
the source term for the secondary, namely our new source is
~q = (σ −σp)~Ep.

To simulate the secondary fields, we want to use a mesh that is
suited for capturing large, three-dimensional structures. In this
case, we use a Cartesian-coordinate tensor mesh. To link the
two problems, the first, on a cylindrical mesh and the second
on a Cartesian mesh, we require an interpolation strategy for
the fields and fluxes. By construction, the fields and fluxes are
defined on the mesh so that they are continuous and smoothly
varying, so the interpolation is straightforward. In order to
maintain that our fluxes are divergence free over the domain
(∇ ·~B = 0 in the E-B formulation, and ∇ · ~J = 0 in the H-J for-
mulation), we interpolate the field (E or H) and compute the
associated flux (B or J) through a discrete curl operation on the
secondary mesh. The mimetic properties of the discretization
ensure that the discrete curl is in the null space of the discrete
divergence, so the fluxes will be divergence free on the sec-
ondary mesh. With the primary fields and fluxes defined on
this mesh, the new source term is then computed and is used to
calculate the secondary fields and fluxes. In Figure 5, we show
a depth slice of the the source term, as described in equation 4
for the magnetic dipole source at 1 Hz, with the casing model
having with a constant magnetic permeability of 50µ0. The
source term is localized to the 200m × 200m resistive region
in Figure 1 which was not included in the primary conductiv-
ity model (equation 4). With the source term for the secondary

Figure 5: Depth slice of the source for the secondary problem.

problem defined, the associated fields and fluxes can then be
simulated. The data are then a projection of the sum of the
primary and secondary responses to the receiver locations.

Inversion
The primary-secondary approach is well-suited for tackling the
inverse problem in this setting. The primary, consisting of
the well and a simple geologic model (which may be derived
from well logs) can be computed once and used directly as the

source for computing the secondary problem, requiring no ex-
tra processing on the measured data. The computed primary
fields are interpolated to the mesh which we use for comput-
ing the secondary responses, and the inversion can be carried
out by computing forward problems on this mesh alone. Note
that the right hand side of equation 4 depends on the physical
property model and needs to be accounted for in the sensitivi-
ties when doing gradient-based optimization.

Such an approach provides opportunity for a significant reduc-
tion in the computational load required by a more traditional
approach to the inverse problem where the full forward model,
including the casing, must be considered at every iteration.
Additionally, no intermediate inversion or analysis, for con-
structing an “equivalent source”, composed of point sources
or dipoles is required. For the example we demonstrated, the
casing, background geologic model and source location sup-
ported the use of a cylindrical mesh for the computation of the
primary. In general, the background geology, well path, and
source location may not adhere to this symmetry requiring a
different strategy for computing the primary. This will likely
require an expensive computation on a mesh which has been
highly refined near the wellbore. Using the primary-secondary
approach, however, means that only one such computation is
required to address the inverse problem.

CONCLUSION
Using the primary-secondary approach for modelling EM sur-
veys in settings where cased wells are present allows for a sep-
aration of concerns between accurately modelling well casing
and modelling three dimensional geologic structures. In the
first step, the source and casing are modelled in a simple geo-
logic background. Well casing has significant electrical con-
ductivity and magnetic permeability, both of which may be
variable along the length of the well. This makes the casing
a complicated structure to model, but an important one, as the
large contrasts in physical properties it presents means that it
may have a significant impact on the EM fields and fluxes.
Much investigation remains to better understand how each of
the complexities introduced by the casing impacts the behav-
ior of the EM signals being used to excite responses in the
surrounding geologic units. In the second step, the computed
primary fields are used as a source for the secondary prob-
lem: simulating the behavior of the EM fields and fluxes in the
presence of three dimensional geologic structures. This pro-
cedure removes concerns of accurately simulating the casing
at this step, as the interaction of the source with the casing is
captured in the computation of the primary response, and con-
tained in the definition of the source for the secondary prob-
lem. When considering the inverse problem, this separation of
concerns provides the benefit that the computation of the cas-
ing response need only be completed once. The remainder of
the inversion is completed on a mesh suitable for characteriz-
ing the variations in the geologic structures of interest.
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